Results 1  10
of
106
A Treatise on ManyValued Logics
 Studies in Logic and Computation
, 2001
"... The paper considers the fundamental notions of many valued logic together with some of the main trends of the recent development of infinite valued systems, often called mathematical fuzzy logics. Besides this logical approach also a more algebraic approach is discussed. And the paper ends with som ..."
Abstract

Cited by 77 (5 self)
 Add to MetaCart
(Show Context)
The paper considers the fundamental notions of many valued logic together with some of the main trends of the recent development of infinite valued systems, often called mathematical fuzzy logics. Besides this logical approach also a more algebraic approach is discussed. And the paper ends with some hints toward applications which are based upon actual theoretical considerations about infinite valued logics. Key words: mathematical fuzzy logic, algebraic semantics, continuous tnorms, leftcontinuous tnorms, Pavelkastyle fuzzy logic, fuzzy set theory, nonmonotonic fuzzy reasoning 1 Basic ideas 1.1 From classical to manyvalued logic Logical systems in general are based on some formalized language which includes a notion of well formed formula, and then are determined either semantically or syntactically. That a logical system is semantically determined means that one has a notion of interpretation or model 1 in the sense that w.r.t. each such interpretation every well formed formula has some (truth) value or represents a function into
Computability and recursion
 BULL. SYMBOLIC LOGIC
, 1996
"... We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they b ..."
Abstract

Cited by 37 (1 self)
 Add to MetaCart
We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful historical and conceptual analysis of computability and recursion we make several recommendations in section §7 about preserving the intensional differences between the concepts of “computability” and “recursion.” Specifically we recommend that: the term “recursive ” should no longer carry the additional meaning of “computable” or “decidable;” functions defined using Turing machines, register machines, or their variants should be called “computable” rather than “recursive;” we should distinguish the intensional difference between Church’s Thesis and Turing’s Thesis, and use the latter particularly in dealing with mechanistic questions; the name of the subject should be “Computability Theory” or simply Computability rather than
Algorithms: A quest for absolute definitions
 Bulletin of the European Association for Theoretical Computer Science
, 2003
"... y Abstract What is an algorithm? The interest in this foundational problem is not only theoretical; applications include specification, validation and verification of software and hardware systems. We describe the quest to understand and define the notion of algorithm. We start with the ChurchTurin ..."
Abstract

Cited by 20 (9 self)
 Add to MetaCart
(Show Context)
y Abstract What is an algorithm? The interest in this foundational problem is not only theoretical; applications include specification, validation and verification of software and hardware systems. We describe the quest to understand and define the notion of algorithm. We start with the ChurchTuring thesis and contrast Church's and Turing's approaches, and we finish with some recent investigations.
Detecting Races in Relay Ladder Logic Programs
, 1998
"... . Relay Ladder Logic (RLL) [5] is a programming language widely used for complex embedded control applications such as manufacturing and amusement park rides. The cost of bugs in RLL programs is extremely high, often measured in millions of dollars (for shutting down a factory) or human safety (for ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
. Relay Ladder Logic (RLL) [5] is a programming language widely used for complex embedded control applications such as manufacturing and amusement park rides. The cost of bugs in RLL programs is extremely high, often measured in millions of dollars (for shutting down a factory) or human safety (for rides). In this paper, we describe our experience in applying constraintbased program analysis techniques to analyze production RLL programs. Our approach is an interesting combination of probabilistic testing and program analysis, and we show that our system is able to detect bugs with high probability, up to the approximations made by the conservative program analysis. We demonstrate that our analysis is useful in detecting some flaws in production RLL programs that are difficult to find by other techniques. Key words: Constraints  Software  Static Analysis  Testing  Verification 1 Introduction Programmable logic controllers (PLC's) are used extensively for complex embedded con...
Elementary formal systems, intrinsic complexity, and procrastination
 Information and Computation
, 1997
"... Recently, rich subclasses of elementary formal systems (EFS) have been shown to be identifiable in the limit from only positive data. Examples of these classes are Angluin’s pattern languages, unions of pattern languages by Wright and Shinohara, and classes of languages definable by lengthbounded e ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
Recently, rich subclasses of elementary formal systems (EFS) have been shown to be identifiable in the limit from only positive data. Examples of these classes are Angluin’s pattern languages, unions of pattern languages by Wright and Shinohara, and classes of languages definable by lengthbounded elementary formal systems studied by Shinohara. The present paper employs two distinct bodies of abstract studies in the inductive inference literature to analyze the learnability of these concrete classes. The first approach, introduced by Freivalds and Smith, uses constructive ordinals to bound the number of mind changes. ω denotes the first limit ordinal. An ordinal mind change bound of ω means that identification can be carried out by a learner that after examining some element(s) of the language announces an upper bound on the number of mind changes it will make before converging; a bound of ω · 2 means that the learner reserves the right to revise this upper bound once; a bound of ω · 3 means the learner reserves the right to revise this upper bound twice, and so on. A bound of ω 2 means that identification can be carried out by a learner that announces an upper bound on the number of times it may revise its conjectured upper bound on the number of mind changes. It is shown in the present paper that the ordinal mind change complexity for identification of languages formed by unions of up to n pattern languages is ω n. It is
Action emulation
 CWI and ILLC, Amsterdam & Department of Economics
, 2004
"... Abstract. The effects of public announcements, private communications, deceptive messages to groups, and so on, can all be captured by a general mechanism of updating multiagent models with update action models [3], now in widespread use (see [10] for a textbook treatment). There is a natural exten ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
(Show Context)
Abstract. The effects of public announcements, private communications, deceptive messages to groups, and so on, can all be captured by a general mechanism of updating multiagent models with update action models [3], now in widespread use (see [10] for a textbook treatment). There is a natural extension of the definition of a bisimulation to action models. Surely enough, updating with bisimilar action models gives the same result (modulo bisimulation). But the converse turns out to be false: update models may have the same update effects without being bisimilar. We propose action emulation as a notion of structural equivalence more appropriate for action models, and generalizing standard bisimulation. It is proved that action emulation provides a full characterization of update effect, provided we confine attention to ‘smooth ’ action models. We also give a recipe for turning any action model into a smooth one with the same update effect. Together, this yields a simplification procedure for action models, and it gives designers of multiagent systems a useful tool for comparing different ways of representing a particular communicative action. 1.
On the Impact of Forgetting on Learning Machines
 Journal of the ACM
, 1993
"... this paper contributes toward the goal of understanding how a computer can be programmed to learn by isolating features of incremental learning algorithms that theoretically enhance their learning potential. In particular, we examine the effects of imposing a limit on the amount of information that ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
(Show Context)
this paper contributes toward the goal of understanding how a computer can be programmed to learn by isolating features of incremental learning algorithms that theoretically enhance their learning potential. In particular, we examine the effects of imposing a limit on the amount of information that learning algorithm can hold in its memory as it attempts to This work was facilitated by an international agreement under NSF Grant 9119540.
Inductive Inference with Procrastination: Back to Definitions
 Fundamenta Informaticae
, 1999
"... In this paper, we reconsider the denition of procrastinating learning machines. In the original denition of Freivalds and Smith [FS93], constructive ordinals are used to bound mindchanges. We investigate possibility of using arbitrary linearly ordered sets to bound mindchanges in similar way. It ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
In this paper, we reconsider the denition of procrastinating learning machines. In the original denition of Freivalds and Smith [FS93], constructive ordinals are used to bound mindchanges. We investigate possibility of using arbitrary linearly ordered sets to bound mindchanges in similar way. It turns out that using certain ordered sets it is possible to dene inductive inference types dierent from the previously known ones. We investigate properties of the new inductive inference types and compare them to other types. This research was supported by Latvian Science Council Grant No.93.599 and NSF Grant 9421640. Some of the results from this paper were presented earlier [AFS96]. y The third author was supported in part by NSF Grant 9301339. 1 Introduction We study inductive inference using the model developed by Gold [Gol67]. There is a well known hierarchy of larger and larger classes of learnable sets of phenomena based on the number of time a learning machine is all...
ON INTERPRETING CHAITIN’S INCOMPLETENESS THEOREM
, 1998
"... The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin’s famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin’s famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good measure of the strength of the theory. I exhibit certain strong counterexamples and establish conclusively that the received view is false. Moreover, I show that the limiting constants provided by the theorem do not in any way reflect the power of formalized theories, but that the values of these constants are actually determined by the chosen coding of Turing machines, and are thus quite accidental.