Results 1 
2 of
2
Parallel Computation of Multivariate Normal Probabilities
"... We present methods for the computation of multivariate normal probabilities on parallel/ distributed systems. After a transformation of the initial integral, an approximation can be obtained using MonteCarlo or quasirandom methods. We propose a metaalgorithm for asynchronous sampling methods and d ..."
Abstract

Cited by 207 (9 self)
 Add to MetaCart
We present methods for the computation of multivariate normal probabilities on parallel/ distributed systems. After a transformation of the initial integral, an approximation can be obtained using MonteCarlo or quasirandom methods. We propose a metaalgorithm for asynchronous sampling methods and derive efficient parallel algorithms for the computation of MVN distribution functions, including a method based on randomized Korobov and Richtmyer sequences. Timing results of the implementations using the MPI parallel environment are given. 1 Introduction The computation of the multivariate normal distribution function F (a; b) = j\Sigmaj \Gamma 1 2 (2) \Gamma n 2 Z b a e \Gamma 1 2 x \Sigma \Gamma1 x dx: (1) often leads to computationalintensive integration problems. Here \Sigma is an n \Theta n symmetric positive definite covariance matrix; furthermore one of the limits in each integration variable may be infinite. Genz [5] performs a sequence of transformations resu...
Numerical Computation of Rectangular Bivariate And Trivariate normal and t probabilities
 STATISTICS AND COMPUTING
, 2004
"... Algorithms for the computation of bivariate and trivariate normal and t probabilities for rectangles are reviewed. The algorithms use numerical integration to approximate transformed probability distribution integrals. A generalization of Plackett's formula is derived for bivariate and trivaria ..."
Abstract

Cited by 54 (1 self)
 Add to MetaCart
Algorithms for the computation of bivariate and trivariate normal and t probabilities for rectangles are reviewed. The algorithms use numerical integration to approximate transformed probability distribution integrals. A generalization of Plackett's formula is derived for bivariate and trivariate t probabilities. New methods are described for the numerical computation of bivariate and trivariate t probabilities. Test results are provided, along with recommendations for the most efficient algorithms for single and double precision computations.