Results 1  10
of
26
What's so special about Kruskal's Theorem AND THE ORDINAL Γ0? A SURVEY OF SOME RESULTS IN PROOF THEORY
 ANNALS OF PURE AND APPLIED LOGIC, 53 (1991), 199260
, 1991
"... This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Kruskal’s tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, an ..."
Abstract

Cited by 43 (3 self)
 Add to MetaCart
This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Kruskal’s tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, and we give a glimpse of Veblen hierarchies, some subsystems of secondorder logic, slowgrowing and fastgrowing hierarchies including Girard’s result, and Goodstein sequences. The central theme of this paper is a powerful theorem due to Kruskal, the “tree theorem”, as well as a “finite miniaturization ” of Kruskal’s theorem due to Harvey Friedman. These versions of Kruskal’s theorem are remarkable from a prooftheoretic point of view because they are not provable in relatively strong logical systems. They are examples of socalled “natural independence phenomena”, which are considered by most logicians as more natural than the metamathematical incompleteness results first discovered by Gödel. Kruskal’s tree theorem also plays a fundamental role in computer science, because it is one of the main tools for showing that certain orderings on trees are well founded. These orderings play a crucial role in proving the termination of systems of rewrite rules and the correctness of KnuthBendix completion procedures. There is also a close connection between a certain infinite countable ordinal called Γ0 and Kruskal’s theorem. Previous definitions of the function involved in this connection are known to be incorrect, in that, the function is not monotonic. We offer a repaired definition of this function, and explore briefly the consequences of its existence.
Higher Order Logic
 In Handbook of Logic in Artificial Intelligence and Logic Programming
, 1994
"... Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Definin ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Defining data types : : : : : : : : : : : : : : : : : : : : : 6 2.4 Describing processes : : : : : : : : : : : : : : : : : : : : : 8 2.5 Expressing convergence using second order validity : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.6 Truth definitions: the analytical hierarchy : : : : : : : : 10 2.7 Inductive definitions : : : : : : : : : : : : : : : : : : : : : 13 3 Canonical semantics of higher order logic : : : : : : : : : : : : 15 3.1 Tarskian semantics of second order logic : : : : : : : : : 15 3.2 Function and re
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
A ModelTheoretic Approach to Ordinal Analysis
 Bulletin of Symbolic Logic
, 1997
"... . We describe a modeltheoretic approach to ordinal analysis via the finite combinatorial notion of an #large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in no ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
. We describe a modeltheoretic approach to ordinal analysis via the finite combinatorial notion of an #large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in nonstandard instances, give rise to models of the theory being analyzed. This method is applied to obtain ordinal analyses of a number of interesting subsystems of first and secondorder arithmetic. x1. Introduction. Two of proof theory's defining goals are the justification of classical theories on constructive grounds, and the extraction of constructive information from classical proofs. Since Gentzen, ordinal analysis has been a major component in these pursuits, and the assignment of recursive ordinals to theories has proven to be an illuminating way of measuring their constructive strength. The traditional approach to ordinal analysis, which uses cutelimination procedures to transfor...
On the logical strength of NashWilliams’ theorem on transfinite sequences
 Logic: from foundations to applications
, 1996
"... Abstract. We show that NashWilliams ’ theorem asserting that the countable transfinite sequences of elements of a betterquasiordering ordered by embeddability form a betterquasiordering is provable in the subsystem of second order arithmetic Π 1 1CA0 but is not equivalent to Π 1 1CA0. We obta ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
Abstract. We show that NashWilliams ’ theorem asserting that the countable transfinite sequences of elements of a betterquasiordering ordered by embeddability form a betterquasiordering is provable in the subsystem of second order arithmetic Π 1 1CA0 but is not equivalent to Π 1 1CA0. We obtain some partial results towards the proof of this theorem in the weaker subsystem ATR0 and we show that the minimality lemmas typical of wqo and bqo theory imply Π 1 1CA0 and hence cannot be used in such a proof. The most natural generalization of the notion of wellordering to partial orderings is the concept of wellquasiordering or wqo. A binary relation � on a set Q is a quasiordering if it is reflexive and transitive (it is a partial ordering if it is also antisymmetric) and a quasiordering is wqo if it contains no infinite descending sequences and no infinite antichains (sets of mutually incomparable elements). Ramsey’s theorem implies that a quasiordering (Q, �) is wqo if and only if for any function f: N → Q there exist n and m such that n < m and f(n) � f(m). For a history of the notion of wqo see [11].
The Realm of Ordinal Analysis
 SETS AND PROOFS. PROCEEDINGS OF THE LOGIC COLLOQUIUM '97
, 1997
"... A central theme running through all the main areas of Mathematical Logic is the classification of sets, functions or theories, by means of transfinite hierarchies whose ordinal levels measure their `rank' or `complexity' in some sense appropriate to the underlying context. In Proof Theory this is ma ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
A central theme running through all the main areas of Mathematical Logic is the classification of sets, functions or theories, by means of transfinite hierarchies whose ordinal levels measure their `rank' or `complexity' in some sense appropriate to the underlying context. In Proof Theory this is manifest in the assignment of `proof theoretic ordinals' to theories, gauging their `consistency strength' and `computational power'. Ordinaltheoretic proof theory came into existence in 1936, springing forth from Gentzen's head in the course of his consistency proof of arithmetic. To put it roughly, ordinal analyses attach ordinals in a given representation system to formal theories. Though this area of mathematical logic has is roots in Hilbert's "Beweistheorie "  the aim of which was to lay to rest all worries about the foundations of mathematics once and for all by securing mathematics via an absolute proof of consistency  technical results in pro...
Universes in Explicit Mathematics
 Annals of Pure and Applied Logic
, 1999
"... This paper deals with universes in explicit mathematics. After introducing some basic definitions, the limit axiom and possible ordering principles for universes are discussed. Later, we turn to least universes, strictness and name induction. Special emphasis is put on theories for explicit mathemat ..."
Abstract

Cited by 8 (5 self)
 Add to MetaCart
This paper deals with universes in explicit mathematics. After introducing some basic definitions, the limit axiom and possible ordering principles for universes are discussed. Later, we turn to least universes, strictness and name induction. Special emphasis is put on theories for explicit mathematics with universes which are prooftheoretically equivalent to Feferman's T 0 . 1 Introduction In some form or another, universes play an important role in many systems of set theory and higher order arithmetic, in various formalizations of constructive mathematics and in logics for computation. One aspect of universes is that they expand the set or type formation principles in a natural and perspicuous way and provide greater expressive power and prooftheoretic strength. The general idea behind universes is quite simple: suppose that we are given a formal system Th comprising certain set (or type) existence principles which are justified on specific philosophical grounds. Then it may be a...
On The Strength Of König's Duality Theorem For Countable Bipartite Graphs
, 1994
"... Let CKDT be the assertion that, for every countably infinite bipartite graph G, there exist a vertex covering C of G and a matching M in G such that C consists of exactly one vertex from each edge in M . (This is a theorem of Podewski and Steffens [12].) Let ATR 0 be the subsystem of second order ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Let CKDT be the assertion that, for every countably infinite bipartite graph G, there exist a vertex covering C of G and a matching M in G such that C consists of exactly one vertex from each edge in M . (This is a theorem of Podewski and Steffens [12].) Let ATR 0 be the subsystem of second order arithmetic with arithmetical transfinite recursion and restricted induction. Let RCA 0 be the subsystem of second order arithmetic with recursive comprehension and restricted induction. We show that CKDT is provable in ATR 0 . Combining this with a result of Aharoni, Magidor and Shore [2], we see that CKDT is logically equivalent to the axioms of ATR 0 , the equivalence being provable in RCA 0 .
The modeltheoretic ordinal analysis of theories of predicative strength
 Journal of Symbolic Logic
, 1999
"... We use modeltheoretic methods described in [3] to obtain ordinal analyses of a number of theories of first and secondorder arithmetic, whose prooftheoretic ordinals are less than or equal to Γ0. 1 ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We use modeltheoretic methods described in [3] to obtain ordinal analyses of a number of theories of first and secondorder arithmetic, whose prooftheoretic ordinals are less than or equal to Γ0. 1