Results 1  10
of
295
The structure and function of complex networks
 SIAM REVIEW
, 2003
"... Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, ..."
Abstract

Cited by 2133 (7 self)
 Add to MetaCart
(Show Context)
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the smallworld effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Structure and evolution of online social networks
 In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining
, 2006
"... In this paper, we consider the evolution of structure within large online social networks. We present a series of measurements of two such networks, together comprising in excess of five million people and ten million friendship links, annotated with metadata capturing the time of every event in the ..."
Abstract

Cited by 352 (4 self)
 Add to MetaCart
(Show Context)
In this paper, we consider the evolution of structure within large online social networks. We present a series of measurements of two such networks, together comprising in excess of five million people and ten million friendship links, annotated with metadata capturing the time of every event in the life of the network. Our measurements expose a surprising segmentation of these networks into three regions: singletons who do not participate in the network; isolated communities which overwhelmingly display star structure; and a giant component anchored by a wellconnected core region which persists even in the absence of stars. We present a simple model of network growth which captures these aspects of component structure. The model follows our experimental results, characterizing users as either passive members of the network; inviters who encourage offline friends and acquaintances to migrate online; and linkers who fully participate in the social evolution of the network.
Models of Random Regular Graphs
 In Surveys in combinatorics
, 1999
"... In a previous paper we showed that a random 4regular graph asymptotically almost surely (a.a.s.) has chromatic number 3. Here we extend the method to show that a random 6regular graph asymptotically almost surely (a.a.s.) has chromatic number 4 and that the chromatic number of a random dregular g ..."
Abstract

Cited by 194 (32 self)
 Add to MetaCart
In a previous paper we showed that a random 4regular graph asymptotically almost surely (a.a.s.) has chromatic number 3. Here we extend the method to show that a random 6regular graph asymptotically almost surely (a.a.s.) has chromatic number 4 and that the chromatic number of a random dregular graph for other d between 5 and 10 inclusive is a.a.s. restricted to a range of two integer values: {3, 4} for d = 5, {4, 5} for d = 7, 8, 9, and {5, 6} for d = 10. The proof uses efficient algorithms which a.a.s. colour these random graphs using the number of colours specified by the upper bound. These algorithms are analysed using the differential equation method, including an analysis of certain systems of differential equations with discontinuous right hand sides. 1
The Size Of The Giant Component Of A Random Graph With A Given Degree Sequence
 COMBIN. PROBAB. COMPUT
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider a random graph having approximately i n vertices of degree i. In [12] the authors essentially show that if P i(i \Gamma 2) i ? 0 then the graph a.s. has a giant component, while if P i(i \Gamma 2) i ! 0 ..."
Abstract

Cited by 170 (0 self)
 Add to MetaCart
(Show Context)
Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider a random graph having approximately i n vertices of degree i. In [12] the authors essentially show that if P i(i \Gamma 2) i ? 0 then the graph a.s. has a giant component, while if P i(i \Gamma 2) i ! 0 then a.s. all components in the graph are small. In this paper we analyze the size of the giant component in the former case, and the structure of the graph formed by deleting that component. We determine
Logarithmic Sobolev inequality and finite markov chains
, 1996
"... This is an expository paper on the use of logarithmic Sobolev inequalities for bounding rates of convergence of Markov chains on finite state spaces to their stationary distributions. Logarithmic Sobolev inequalities complement eigenvalue techniques and work for nonreversible chains in continuous ti ..."
Abstract

Cited by 157 (12 self)
 Add to MetaCart
This is an expository paper on the use of logarithmic Sobolev inequalities for bounding rates of convergence of Markov chains on finite state spaces to their stationary distributions. Logarithmic Sobolev inequalities complement eigenvalue techniques and work for nonreversible chains in continuous time. Some aspects of the theory simplify considerably with finite state spaces and we are able to give a selfcontained development. Examples of applications include the study of a Metropolis chain for the binomial distribution, sharp results for natural chains on the box of side n in d dimensions and improved rates for exclusion processes. We also show that for most rregular graphs the logSobolev constant is of smaller order than the spectral gap. The logSobolev constant of the asymmetric twopoint space is computed exactly as well as the logSobolev constant of the complete graph on n points.
The phase transition in inhomogeneous random graphs, preprint available from http://www.arxiv.org/abs/math.PR/0504589
"... Abstract. The ‘classical ’ random graph models, in particular G(n, p), are ‘homogeneous’, in the sense that the degrees (for example) tend to be concentrated around a typical value. Many graphs arising in the real world do not have this property, having, for example, powerlaw degree distributions. ..."
Abstract

Cited by 156 (32 self)
 Add to MetaCart
(Show Context)
Abstract. The ‘classical ’ random graph models, in particular G(n, p), are ‘homogeneous’, in the sense that the degrees (for example) tend to be concentrated around a typical value. Many graphs arising in the real world do not have this property, having, for example, powerlaw degree distributions. Thus there has been a lot of recent interest in defining and studying ‘inhomogeneous ’ random graph models. One of the most studied properties of these new models is their ‘robustness’, or, equivalently, the ‘phase transition ’ as an edge density parameter is varied. For G(n, p), p = c/n, the phase transition at c = 1 has been a central topic in the study of random graphs for well over 40 years. Many of the new inhomogenous models are rather complicated; although there are exceptions, in most cases precise questions such as determining exactly the critical point of the phase transition are approachable only when there is independence between the edges. Fortunately, some models studied have this already, and others can be approximated by models with
Sudden emergence of a giant kcore in a random graph
 J. Combin. Theory Ser B
, 1996
"... ..."
(Show Context)
Lower bounds for random 3SAT via differential equations
 THEORETICAL COMPUTER SCIENCE
, 2001
"... ..."
On Unbiased Sampling for Unstructured PeertoPeer Networks
 in Proc. ACM IMC
, 2006
"... This paper addresses the difficult problem of selecting representative samples of peer properties (e.g., degree, link bandwidth, number of files shared) in unstructured peertopeer systems. Due to the large size and dynamic nature of these systems, measuring the quantities of interest on every peer ..."
Abstract

Cited by 72 (7 self)
 Add to MetaCart
(Show Context)
This paper addresses the difficult problem of selecting representative samples of peer properties (e.g., degree, link bandwidth, number of files shared) in unstructured peertopeer systems. Due to the large size and dynamic nature of these systems, measuring the quantities of interest on every peer is often prohibitively expensive, while sampling provides a natural means for estimating systemwide behavior efficiently. However, commonlyused sampling techniques for measuring peertopeer systems tend to introduce considerable bias for two reasons. First, the dynamic nature of peers can bias results towards shortlived peers, much as naively sampling flows in a router can lead to bias towards shortlived flows. Second, the heterogeneous nature of the overlay topology can lead to bias towards highdegree peers. We present a detailed examination of the ways that the behavior of peertopeer systems can introduce bias and suggest the Metropolized Random Walk with Backtracking (MRWB) as a viable and promising technique for collecting nearly unbiased samples. We conduct an extensive simulation study to demonstrate that the proposed technique works well for a wide variety of common peertopeer network conditions. Using the Gnutella network, we empirically show that our implementation of the MRWB technique yields more accurate samples than relying on commonlyused sampling techniques. Furthermore, we provide insights into the causes of the observed differences. The tool we have developed, ionsampler, selects peer addresses uniformly at random using the MRWB technique. These addresses may then be used as input to another measurement tool to collect data on a particular property.
Simple Markovchain algorithms for generating bipartite graphs and tournaments (Extended Abstract)
, 1997
"... ) Ravi Kannan Prasad Tetali y Santosh Vempala z Abstract We consider two problems: randomly generating labeled bipartite graphs with a given degree sequence and randomly generating labeled tournaments with a given score sequence. We analyze simple Markov chains for both problems. For the firs ..."
Abstract

Cited by 58 (0 self)
 Add to MetaCart
) Ravi Kannan Prasad Tetali y Santosh Vempala z Abstract We consider two problems: randomly generating labeled bipartite graphs with a given degree sequence and randomly generating labeled tournaments with a given score sequence. We analyze simple Markov chains for both problems. For the first problem, we cannot prove that our chain is rapidly mixing in general, but in the (near) regular case, i.e. when all the degrees are (almost) equal, we give a proof of rapid mixing. Our methods also apply to the corresponding problem for general (nonbipartite) regular graphs which was studied earlier by several researchers. One significant difference in our approach is that our chain has one state for every graph (or bipartite graph) with the given degree sequence; in particular, there are no auxiliary states as in the chain used by Jerrum and Sinclair. For the problem of generating tournaments, we are able to prove that our Markov chain on tournaments is rapidly mixing, if the score seque...