Results 1  10
of
149
A Neural Network Approach to Topic Spotting
, 1995
"... This paper presents an application of nonlinear neural networks to topic spotting. Neural networks allow us to model higherorder interaction between document terms and to simultaneously predict multiple topics using shared hidden features. In the context of this model, we compare two approaches to d ..."
Abstract

Cited by 152 (1 self)
 Add to MetaCart
This paper presents an application of nonlinear neural networks to topic spotting. Neural networks allow us to model higherorder interaction between document terms and to simultaneously predict multiple topics using shared hidden features. In the context of this model, we compare two approaches to dimensionality reduction in representation: one based on term selection and another based on Latent Semantic Indexing (LSI). Two different methods are proposed for improving LSI representations for the topic spotting task. We find that term selection and our modified LSI representations lead to similar topic spotting performance, and that this performance is equal to or better than other published results on the same corpus. 1 Introduction Topic spotting is the problem of identifying which of a set of predefined topics are present in a natural language document. More formally, given a set of n topics and a document, the task is to output for each topic the probability that the topic is prese...
Neural Net Architectures for Temporal Sequence Processing
, 1994
"... I present a general taxonomy of neural net architectures for processing timevarying patterns. This taxonomy subsumes many existing architectures in the literature, and points to several promising architectures that have yet to be examined. Any architecture that processes timevarying patterns requir ..."
Abstract

Cited by 106 (0 self)
 Add to MetaCart
I present a general taxonomy of neural net architectures for processing timevarying patterns. This taxonomy subsumes many existing architectures in the literature, and points to several promising architectures that have yet to be examined. Any architecture that processes timevarying patterns requires two conceptually distinct components: a shortterm memory that holds on to relevant past events and an associator that uses the shortterm memory to classify or predict. My taxonomy is based on a characterization of shortterm memory models along the dimensions of form, content, and adaptability. Experiments on predicting future values of a financial time series (US dollarSwiss franc exchange rates) are presented using several alternative memory models. The results of these experiments serve as a baseline against which more sophisticated architectures can be compared. Neural networks have proven to be a promising alternative to traditional techniques for nonlinear temporal prediction t...
Nonlinear Gated Experts for Time Series: Discovering Regimes and Avoiding Overfitting
, 1995
"... this paper: ftp://ftp.cs.colorado.edu/pub/TimeSeries/MyPapers/experts.ps.Z, ..."
Abstract

Cited by 81 (5 self)
 Add to MetaCart
this paper: ftp://ftp.cs.colorado.edu/pub/TimeSeries/MyPapers/experts.ps.Z,
Time Series Prediction by Using a Connectionist Network with Internal Delay Lines
 Time Series Prediction
, 1994
"... A neural network architecture, which models synapses as Finite Impulse Response (FIR) linear filters, is discussed for use in time series prediction. Analysis and methodology are detailed in the context of the Santa Fe Institute Time Series Prediction Competition. Results of the competition show tha ..."
Abstract

Cited by 62 (4 self)
 Add to MetaCart
A neural network architecture, which models synapses as Finite Impulse Response (FIR) linear filters, is discussed for use in time series prediction. Analysis and methodology are detailed in the context of the Santa Fe Institute Time Series Prediction Competition. Results of the competition show that the FIR network performed remarkably well on a chaotic laser intensity time series. 1 Introduction The goal of time series prediction or forecasting can be stated succinctly as follows: given a sequence y(1); y(2); : : : y(N) up to time N , find the continuation y(N + 1); y(N + 2)::: The series may arise from the sampling of a continuous time system, and be either stochastic or deterministic in origin. The standard prediction approach involves constructing an underlying model which gives rise to the observed sequence. In the oldest and most studied method, which dates back to Yule [1], a linear autoregression (AR) is fit to the data: y(k) = T X n=1 a(n)y(k \Gamma n) + e(k) = y(k) + ...
Discovering Neural Nets With Low Kolmogorov Complexity And High Generalization Capability
 Neural Networks
, 1997
"... Many neural net learning algorithms aim at finding "simple" nets to explain training data. The expectation is: the "simpler" the networks, the better the generalization on test data (! Occam's razor). Previous implementations, however, use measures for "simplicity" that lack the power, universali ..."
Abstract

Cited by 50 (31 self)
 Add to MetaCart
Many neural net learning algorithms aim at finding "simple" nets to explain training data. The expectation is: the "simpler" the networks, the better the generalization on test data (! Occam's razor). Previous implementations, however, use measures for "simplicity" that lack the power, universality and elegance of those based on Kolmogorov complexity and Solomonoff's algorithmic probability. Likewise, most previous approaches (especially those of the "Bayesian" kind) suffer from the problem of choosing appropriate priors. This paper addresses both issues. It first reviews some basic concepts of algorithmic complexity theory relevant to machine learning, and how the SolomonoffLevin distribution (or universal prior) deals with the prior problem. The universal prior leads to a probabilistic method for finding "algorithmically simple" problem solutions with high generalization capability. The method is based on Levin complexity (a timebounded generalization of Kolmogorov comple...
Neural networks for classification: a survey
 and Cybernetics  Part C: Applications and Reviews
, 2000
"... Abstract—Classification is one of the most active research and application areas of neural networks. The literature is vast and growing. This paper summarizes the some of the most important developments in neural network classification research. Specifically, the issues of posterior probability esti ..."
Abstract

Cited by 45 (0 self)
 Add to MetaCart
Abstract—Classification is one of the most active research and application areas of neural networks. The literature is vast and growing. This paper summarizes the some of the most important developments in neural network classification research. Specifically, the issues of posterior probability estimation, the link between neural and conventional classifiers, learning and generalization tradeoff in classification, the feature variable selection, as well as the effect of misclassification costs are examined. Our purpose is to provide a synthesis of the published research in this area and stimulate further research interests and efforts in the identified topics. Index Terms—Bayesian classifier, classification, ensemble methods, feature variable selection, learning and generalization, misclassification costs, neural networks. I.
Finite Impulse Response Neural Networks for Autoregressive Time Series Prediction
, 1993
"... A neural network architecture, which models synapses as Finite Impulse Response (FIR) linear filters, is discussed for use in time series prediction. Analysis and methodology are detailed in the context of the Santa Fe Institute Time Series Prediction Competition. Results of the competition show tha ..."
Abstract

Cited by 40 (3 self)
 Add to MetaCart
A neural network architecture, which models synapses as Finite Impulse Response (FIR) linear filters, is discussed for use in time series prediction. Analysis and methodology are detailed in the context of the Santa Fe Institute Time Series Prediction Competition. Results of the competition show that the FIR network performed remarkably well on a chaotic laser intensity time series. 1 Introduction The goal of time series prediction or forecasting can be stated succinctly as follows: given a sequence y(1); y(2); : : : y(N) up to time N , find the continuation y(N + 1); y(N + 2)::: The series may arise from the sampling of a continuous time system, and be either stochastic or deterministic in origin. The standard prediction approach involves constructing an underlying model which gives rise to the observed sequence. In the oldest and most studied method, which dates back to Yule [1], a linear autoregression (AR) is fit to the data: y(k) = T X n=1 a(n)y(k \Gamma n) + e(k) = y(k) + e...
Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 1998
"... Three networks are compared for low false alarm stock trend predictions. Shortterm trends, particularly attractive for neural network analysis, can be used profitably in scenarios such as option trading, but only with significant risk. Therefore, we focus on limiting false alarms, which improves ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
Three networks are compared for low false alarm stock trend predictions. Shortterm trends, particularly attractive for neural network analysis, can be used profitably in scenarios such as option trading, but only with significant risk. Therefore, we focus on limiting false alarms, which improves the risk/reward ratio by preventing losses. To predict stock trends, we exploit time delay, recurrent, and probabilistic neural networks (TDNN, RNN, and PNN, respectively), utilizing conjugate gradient and multistream extended Kalman filter training for TDNN and RNN. We also discuss different predictability analysis techniques and perform an analysis of predictability based on a history of daily closing price. Our results indicate that all the networks are feasible, the primary preference being one of convenience.
New tools in nonlinear modelling and prediction
 Comput. Manag. Sci
, 2004
"... 1.1 The Gamma test........................... 4 1.1.1 The slope constant A.................... 6 1.1.2 Local versus global...................... 7 ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
1.1 The Gamma test........................... 4 1.1.1 The slope constant A.................... 6 1.1.2 Local versus global...................... 7