Results 1  10
of
29
Real Algebraic Numbers: Complexity Analysis and Experimentation
 RELIABLE IMPLEMENTATIONS OF REAL NUMBER ALGORITHMS: THEORY AND PRACTICE, LNCS (TO APPEAR
, 2006
"... We present algorithmic, complexity and implementation results concerning real root isolation of a polynomial of degree d, with integer coefficients of bit size ≤ τ, using Sturm (Habicht) sequences and the Bernstein subdivision solver. In particular, we unify and simplify the analysis of both metho ..."
Abstract

Cited by 34 (20 self)
 Add to MetaCart
We present algorithmic, complexity and implementation results concerning real root isolation of a polynomial of degree d, with integer coefficients of bit size ≤ τ, using Sturm (Habicht) sequences and the Bernstein subdivision solver. In particular, we unify and simplify the analysis of both methods and we give an asymptotic complexity bound of eOB(d 4 τ 2). This matches the best known bounds for binary subdivision solvers. Moreover, we generalize this to cover the non squarefree polynomials and show that within the same complexity we can also compute the multiplicities of the roots. We also consider algorithms for sign evaluation, comparison of real algebraic numbers and simultaneous inequalities, and we improve the known bounds at least by a factor of d. Finally, we present our C++ implementation in synaps and some preliminary experiments on various data sets.
Almost tight recursion tree bounds for the Descartes method
 In Proc. Int. Symp. on Symbolic and Algebraic Computation
, 2006
"... We give a unified (“basis free”) framework for the Descartes method for real root isolation of squarefree real polynomials. This framework encompasses the usual Descartes ’ rule of sign method for polynomials in the power basis as well as its analog in the Bernstein basis. We then give a new bound ..."
Abstract

Cited by 32 (3 self)
 Add to MetaCart
We give a unified (“basis free”) framework for the Descartes method for real root isolation of squarefree real polynomials. This framework encompasses the usual Descartes ’ rule of sign method for polynomials in the power basis as well as its analog in the Bernstein basis. We then give a new bound on the size of the recursion tree in the Descartes method for polynomials with real coefficients. Applied to polynomials A(X) = P n i=0 aiXi with integer coefficients ai  < 2 L, this yields a bound of O(n(L + log n)) on the size of recursion trees. We show that this bound is tight for L = Ω(log n), and we use it to derive the best known bit complexity bound for the integer case.
Semidefinite characterization and computation of zerodimensional real radical ideals
, 2007
"... real radical ideals ..."
HIGHPERFORMANCE IMPLEMENTATIONS OF THE DESCARTES METHOD
, 2006
"... The Descartes method for polynomial real root isolation can be performed with respect to monomial bases and with respect to Bernstein bases. The first variant uses Taylor shift by 1 as its main subalgorithm, the second uses de Casteljau’s algorithm. When applied to integer polynomials, the two vari ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
The Descartes method for polynomial real root isolation can be performed with respect to monomial bases and with respect to Bernstein bases. The first variant uses Taylor shift by 1 as its main subalgorithm, the second uses de Casteljau’s algorithm. When applied to integer polynomials, the two variants have codominant, almost tight computing time bounds. Implementations of either variant can obtain speedups over previous stateoftheart implementations by more than an order of magnitude if they use features of the processor architecture. We present an implementation of the Bernsteinbases variant of the Descartes method that automatically generates architectureaware highlevel code and leaves further optimizations to the compiler. We compare the performance of our implementation, algorithmically tuned implementations of the monomial and Bernstein variants, and architectureunaware implementations of both variants on four different processor architectures and for three classes of input polynomials.
Semidefinite characterization and computation of real radical ideals
 Foundations of Computational Mathematics
"... For an ideal I ⊆ R[x] given by a set of generators, a new semidefinite characterization of its real radical I(VR(I)) is presented, provided it is zerodimensional (even if I is not). Moreover we propose an algorithm using numerical linear algebra and semidefinite optimization techniques, to compute ..."
Abstract

Cited by 8 (6 self)
 Add to MetaCart
For an ideal I ⊆ R[x] given by a set of generators, a new semidefinite characterization of its real radical I(VR(I)) is presented, provided it is zerodimensional (even if I is not). Moreover we propose an algorithm using numerical linear algebra and semidefinite optimization techniques, to compute all (finitely many) points of the real variety VR(I) as well as a set of generators of the real radical ideal. The latter is obtained in the form of a border or Gröbner basis. The algorithm is based on moment relaxations and, in contrast to other existing methods, it exploits the real algebraic nature of the problem right from the beginning and avoids the computation of complex components. AMS: 14P05 13P10 12E12 12D10 90C22 1
Topology and arrangement computation of semialgebraic planar curves
 CAGD
, 2008
"... We describe a new subdivision method to efficiently compute the topology and the arrangement of implicit planar curves. We emphasize that the output topology and arrangement are guaranteed to be correct. Although we focus on the implicit case, the algorithm can also treat parametric or piecewise lin ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We describe a new subdivision method to efficiently compute the topology and the arrangement of implicit planar curves. We emphasize that the output topology and arrangement are guaranteed to be correct. Although we focus on the implicit case, the algorithm can also treat parametric or piecewise linear curves without much additional work and no theoretical difficulties. The method isolates singular points from regular parts and deals with them independently. The topology near singular points is guaranteed through topological degree computation. In either case the topology inside regions is recovered from information on the boundary of a cell of the subdivision. Obtained regions are segmented to provide an efficient insertion operation while dynamically maintaining an arrangement structure. We use enveloping techniques of the polynomial represented in the Bernstein basis to achieve both efficiency and certification. It is finally shown on examples that this algorithm is able to handle curves defined by high degree polynomials with large coefficients, to identify regions of interest and use the resulting structure for either efficient rendering of implicit curves, point localization or boolean operation computation.
Signature Sequence of Intersection Curve of Two Quadrics for Exact Morphological Classification
, 2007
"... We present an efficient method for classifying the morphology of the intersection curve of two quadrics (QSIC) in PR³, 3D real projective space; here, the term morphology is used in a broad sense to mean the shape, topological, and algebraic properties of a QSIC, including singularity, reducibility, ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
We present an efficient method for classifying the morphology of the intersection curve of two quadrics (QSIC) in PR³, 3D real projective space; here, the term morphology is used in a broad sense to mean the shape, topological, and algebraic properties of a QSIC, including singularity, reducibility, the number of connected components, and the degree of each irreducible component, etc. There are in total 35 different QSIC morphologies with nondegenerate quadric pencils. For each of these 35 QSIC morphologies, through a detailed study of the eigenvalue curve and the index function jump we establish a characterizing algebraic condition expressed in terms of the Segre characteristics and the signature sequence of a quadric pencil. We show how to compute a signature sequence with rational arithmetic so as to determine the morphology of the intersection curve of any two given quadrics. Two immediate applications of our results are the robust topological classification of QSIC in computing Brep surface representation in solid modeling and the derivation of algebraic conditions for collision detection of quadric primitives.
Continued fraction expansion of real roots of polynomial systems
 In Proc. of SNC ’09
, 2009
"... We present a new algorithm for isolating the real roots of a system of multivariate polynomials, given in the monomial basis. It is inspired by existing subdivision methods in the Bernstein basis; it can be seen as generalization of the univariate continued fraction algorithm or alternatively as a f ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
We present a new algorithm for isolating the real roots of a system of multivariate polynomials, given in the monomial basis. It is inspired by existing subdivision methods in the Bernstein basis; it can be seen as generalization of the univariate continued fraction algorithm or alternatively as a fully analog of Bernstein subdivision in the monomial basis. The representation of the subdivided domains is done through homographies, which allows us to use only integer arithmetic and to treat efficiently unbounded regions. We use univariate bounding functions, projection and preconditionning techniques to reduce the domain of search. The resulting boxes have optimized rational coordinates, corresponding to the first terms of the continued fraction expansion of the real roots. An extension of Vincent’s theorem to multivariate polynomials is proved and used for the termination of the algorithm. New complexity bounds are provided for a simplified version of the algorithm. Examples computed with a preliminary C++ implementation illustrate the approach.
Real Root Isolation of Regular Chains
"... We present an algorithm RealRootIsolate for isolating the real roots of a system of multivariate polynomials given by a zerodimensional squarefree regular chain. The output of the algorithm is guaranteed in the sense that all real roots are obtained and are described by boxes of arbitrary precision. ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
We present an algorithm RealRootIsolate for isolating the real roots of a system of multivariate polynomials given by a zerodimensional squarefree regular chain. The output of the algorithm is guaranteed in the sense that all real roots are obtained and are described by boxes of arbitrary precision. Real roots are encoded with a hybrid representation, combining a symbolic object, namely a regular chain, and a numerical approximation given by intervals. Our isolation algorithm is a generalization, for regular chains, of the algorithm proposed by Collins and Akritas. We have implemented RealRootIsolate as a command of the module SemiAlgebraicSetTools of the RegularChains library in Maple. Benchmarks are reported. 1