Results 1 
2 of
2
Descriptive Complexity Theory over the Real Numbers
 LECTURES IN APPLIED MATHEMATICS
, 1996
"... We present a logical approach to complexity over the real numbers with respect to the model of Blum, Shub and Smale. The logics under consideration are interpreted over a special class of twosorted structures, called Rstructures: They consist of a finite structure together with the ordered field ..."
Abstract

Cited by 24 (8 self)
 Add to MetaCart
We present a logical approach to complexity over the real numbers with respect to the model of Blum, Shub and Smale. The logics under consideration are interpreted over a special class of twosorted structures, called Rstructures: They consist of a finite structure together with the ordered field of reals and a finite set of functions from the finite structure into R. They are a special case of the metafinite structures introduced recently by Grädel and Gurevich. We argue that Rstructures provide the right class of structures to develop a descriptive complexity theory over R. We substantiate this claim by a number of results that relate logical definability on Rstructures with complexity of computations of BSSmachines.
M.: Uncomputability Below the Real Halting Problem
 CiE 2006. LNCS
, 2006
"... Abstract. Most of the existing work in real number computation theory concentrates on complexity issues rather than computability aspects. Though some natural problems like deciding membership in the Mandelbrot set or in the set of rational numbers are known to be undecidable in the BlumShubSmale ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. Most of the existing work in real number computation theory concentrates on complexity issues rather than computability aspects. Though some natural problems like deciding membership in the Mandelbrot set or in the set of rational numbers are known to be undecidable in the BlumShubSmale (BSS) model of computation over the reals, there has not been much work on different degrees of undecidability. A typical question into this direction is the real version of Post’s classical problem: Are there some explicit undecidable problems below the real Halting Problem? In this paper we study three different topics related to such questions: First an extension of a positive answer to Post’s problem to the linear setting. We then analyze how additional real constants increase the power of a BSS machine. And finally a real variant of the classical word problem for groups is presented which we establish reducible to and from (that is, complete for) the BSS Halting problem. 1