Results 1 
1 of
1
A Convex Powerdomain over Lattices: its Logic and λCalculus
, 1997
"... . To model at the same time parallel and nondeterministic functional calculi we define a powerdomain functor P such that it is an endofunctor over the category of algebraic lattices. P is locally continuous and we study the initial solution D 1 of the domain equation D = P([D ! D]? ). We derive f ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
. To model at the same time parallel and nondeterministic functional calculi we define a powerdomain functor P such that it is an endofunctor over the category of algebraic lattices. P is locally continuous and we study the initial solution D 1 of the domain equation D = P([D ! D]? ). We derive from the algebras of P the logic of D 1 , that is the axiomatic description of its compact elements. We then define a calculus and a type assignment system using the logic of D 1 as the related type theory. We prove that the filter model of this calculus, which is isomorphic to D 1 , is fully abstract with respect to the observational preorder of the calculus. Keywords: calculus, Nondeterminism, Full Abstraction, Powerdomain Construction, Intersection Type Disciplines. 1. Introduction One of the main issues in the design of programming languages is the achievement of a good compromise between the multiplicity of control structures and data types and the unicity of the mathematica...