Results 1 
9 of
9
On universes in type theory
 191 – 204
, 1998
"... The notion of a universe of types was introduced into constructive type theory by MartinLöf (1975). According to the propositionsastypes principle inherent in ..."
Abstract

Cited by 32 (8 self)
 Add to MetaCart
The notion of a universe of types was introduced into constructive type theory by MartinLöf (1975). According to the propositionsastypes principle inherent in
TypeTheoretic Methodology For Practical Programming Languages
 DEPARTMENT OF COMPUTER SCIENCE, CORNELL UNIVERSITY
, 1998
"... The significance of type theory to the theory of programming languages has long been recognized. Advances in programming languages have often derived from understanding that stems from type theory. However, these applications of type theory to practical programming languages have been indirect; the ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
The significance of type theory to the theory of programming languages has long been recognized. Advances in programming languages have often derived from understanding that stems from type theory. However, these applications of type theory to practical programming languages have been indirect; the differences between practical languages and type theory have prevented direct connections between the two. This dissertation presents systematic techniques directly relating practical programming languages to type theory. These techniques allow programming languages to be interpreted in the rich mathematical domain of type theory. Such interpretations lead to semantics that are at once denotational and operational, combining the advantages of each, and they also lay the foundation for formal verification of computer programs in type theory. Previous type theories either have not provided adequate expressiveness to interpret practical languages, or have provided such expressiveness at the expense of essential features of the type theory. In particular, no previous type theory has supported a notion of partial functions (needed to interpret recursion in practical languages), and a notion of total functions and objects (needed to reason about data values), and an intrinsic notion of equality (needed for most interesting results). This dissertation presents the first type theory incorporating all three, and discusses issues arising in the design of that type theory. This type theory is used as the target of a typetheoretic semantics for a expressive programming calculus. This calculus may serve as an internal language for a variety of functional programming languages. The semantics is stated as a syntaxdirected embedding of the programming calculus into type theory. A critical point arising in both the type theory and the typetheoretic semantics is the issue of admissibility. Admissibility governs what types it is legal to form recursive functions over. To build a useful type theory for partial functions it is necessary to have a wide class of admissible types. In particular, it is necessary for all the types arising in the typetheoretic semantics to be admissible. In this dissertation I present a class of admissible types that is considerably wider than any previously known class.
Inaccessibility in Constructive Set Theory and Type Theory
, 1998
"... This paper is the first in a series whose objective is to study notions of large sets in the context of formal theories of constructivity. The two theories considered are Aczel's constructive set theory (CZF) and MartinLof's intuitionistic theory of types. This paper treats Mahlo&apos ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
This paper is the first in a series whose objective is to study notions of large sets in the context of formal theories of constructivity. The two theories considered are Aczel's constructive set theory (CZF) and MartinLof's intuitionistic theory of types. This paper treats Mahlo's numbers which give rise classically to the enumerations of inaccessibles of all transfinite orders. We extend the axioms of CZF and show that the resulting theory, when augmented by the tertium non datur, is equivalent to ZF plus the assertion that there are inaccessibles of all transfinite orders. Finally the theorems of that extension of CZF are interpreted in an extension of MartinLof's intuitionistic theory of types by a universe. 1 Prefatory and historical remarks The paper is organized as follows: After recalling Mahlo's numbers and relating the history of universes in MartinLof type theory in section 1, we study notions of inaccessibility in the context of Aczel's constructive set theo...
Density Theorems for the DomainsWithTotality Semantics of Dependent Types
 Applied Categorical Structures
, 2000
"... . We study a semantics of dependent types and universe operators based on parametrized domains with totality. The main results are generalizations of the Kleene/Kreisel density theorem for the continuous functionals. This continues work of E. Palmgren and V. Stoltenberg{Hansen on the domain interpre ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
. We study a semantics of dependent types and universe operators based on parametrized domains with totality. The main results are generalizations of the Kleene/Kreisel density theorem for the continuous functionals. This continues work of E. Palmgren and V. Stoltenberg{Hansen on the domain interpretation of dependent types, and of D. Normann on universes of wellfounded types with density. Key words: Continuous functionals, Domains, Totality, Dependent types, Universes 1. Introduction In Mathematical Logic and Computer Science there is growing interest in constructive type theories as developed by Martin{Lof [8]. This paper is concerned with a semantics of such theories within the realm of Ershov{Scott domains [5] with totality [10]. Erik Palmgren and Viggo Stoltenberg{Hansen [15], [17] developed a semantics for a partial type theory (modelling partial functions and functionals) based on the notion of a parametrization, i.e. a domain depending on parameters. Since this semantics wa...
Continuous Functionals of Dependent and Transfinite Types
, 1995
"... this paper we study some extensions of the KleeneKreisel continuous functionals [7, 8] and show that most of the constructions and results, in particular the crucial density theorem, carry over from nite to dependent and transnite types. Following an approach of Ershov we dene the continuous functi ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
this paper we study some extensions of the KleeneKreisel continuous functionals [7, 8] and show that most of the constructions and results, in particular the crucial density theorem, carry over from nite to dependent and transnite types. Following an approach of Ershov we dene the continuous functionals as the total elements in a hierarchy of ErshovScottdomains of partial continuous functionals. In this setting the density theorem says that the total functionals are topologically dense in the partial ones, i.e. every nite (compact) functional has a total extension. We will extend this theorem from function spaces to dependent products and sums and universes. The key to the proof is the introduction of a suitable notion of density and associated with it a notion of codensity for dependent domains with totality. We show that the universe obtained by closing a given family of basic domains with totality under some quantiers has a dense and codense totality provided the totalities on the basic domains are dense and codense and the quantiers preserve density and codensity. In particular we can show that the quantiers and have this preservation property and hence, for example, the closure of the integers and the booleans (which are dense and codense) under and has a dense and codense totality. We also discuss extensions of the density theorem to iterated universes, i.e. universes closed under universe operators. From our results we derive a dependent continuous choice principle and a simple ordertheoretic characterization of extensional equality for total objects. Finally we survey two further applications of density: Waagb's extension of the KreiselLacombeShoeneldTheorem showing the coincidence of the hereditarily eectively continuous hierarchy...
The strength of MartinLöf type theory with a superuniverse. Part II
 PART I. ARCHIVE FOR MATHEMATICAL LOGIC 39, ISSUE
, 2000
"... Universes of types were introduced into constructive type theory by MartinLof [3]. The idea of forming universes in type theory is to introduce a universe as a set closed under a certain specified ensemble of set constructors, say C. The universe then "reflects" C. This is the second par ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Universes of types were introduced into constructive type theory by MartinLof [3]. The idea of forming universes in type theory is to introduce a universe as a set closed under a certain specified ensemble of set constructors, say C. The universe then "reflects" C. This is the second part of a paper which addresses the exact logical strength of a particular such universe construction, the socalled superuniverse due to Palmgren (cf. [4, 5, 6]). It is proved that MartinLof type theory with a superuniverse, termed MLS, is a system whose prooftheoretic ordinal resides strictly above the FefermanSchutte ordinal \Gamma 0 but well below the BachmannHoward ordinal. Not many theories of strength between \Gamma 0 and the BachmannHoward ordinal have arisen. MLS provides a natural example for such a theory. In this second part of the paper the concern is with the with upper bounds.
Hybrid PartialTotal Type Theory
, 1995
"... In this paper a hybrid type theory HTT is defined which combines the programming language notion of partial type with the logical notion of total type into a single theory. A new partial type constructor A is added to the type theory: objects in A may diverge, but if they converge, they must be memb ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
In this paper a hybrid type theory HTT is defined which combines the programming language notion of partial type with the logical notion of total type into a single theory. A new partial type constructor A is added to the type theory: objects in A may diverge, but if they converge, they must be members of A. A fixed point typing rule is given to allow for typing of fixed points. The underlying theory is based on ideas from Feferman's Class Theory and Martin Lof's Intuitionistic Type Theory. The extraction paradigm of constructive type theory is extended to allow direct extraction of arbitrary fixed points. Important features of general programming logics such as LCF are preserved, including the typing of all partial functions, a partial ordering ! ¸ on computations, and a fixed point induction principle. The resulting theory is thus intended as a generalpurpose programming logic. Rules are presented and soundness of the theory established. Keywords: Constructive Type Theory, Logics...
Sheaves for predicative toposes
 ArXiv:math.LO/0507480v1
"... Abstract: In this paper, we identify some categorical structures in which one can model predicative formal systems: in other words, predicative analogues of the notion of a topos, with the aim of using sheaf models to interprete predicative formal systems. Among our technical results, we prove that ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract: In this paper, we identify some categorical structures in which one can model predicative formal systems: in other words, predicative analogues of the notion of a topos, with the aim of using sheaf models to interprete predicative formal systems. Among our technical results, we prove that all the notions of a “predicative topos ” that we consider, are stable under presheaves, while most are stable under sheaves. 1