Results 1  10
of
70
On the Solution of Traveling Salesman Problems
 DOC. MATH. J. DMV
, 1998
"... Following the theoretical studies of J.B. Robinson and H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulkerson, and S.M. Johnson demonstrated in 1954 that large instances of the TSP could be solved by linear programming. Their approach remains the only known tool for solving TS ..."
Abstract

Cited by 164 (7 self)
 Add to MetaCart
Following the theoretical studies of J.B. Robinson and H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulkerson, and S.M. Johnson demonstrated in 1954 that large instances of the TSP could be solved by linear programming. Their approach remains the only known tool for solving TSP instances with more than several hundred cities; over the years, it has evolved further through the work of M. Grötschel , S. Hong , M. Jünger , P. Miliotis , D. Naddef , M. Padberg
A BranchandCut Algorithm for the Symmetric Generalized Travelling Salesman Problem
, 1995
"... We consider a variant of the classical symmetric Travelling Salesman Problem in which the nodes are partitioned into clusters and the salesman has to visit at least one node for each cluster. This NPhard problem is known in the literature as the symmetric Generalized Travelling Salesman Problem (GT ..."
Abstract

Cited by 61 (5 self)
 Add to MetaCart
We consider a variant of the classical symmetric Travelling Salesman Problem in which the nodes are partitioned into clusters and the salesman has to visit at least one node for each cluster. This NPhard problem is known in the literature as the symmetric Generalized Travelling Salesman Problem (GTSP), and finds practical applications in routing, scheduling and locationrouting. In a companion paper [5] we modeled GTSP as an integer linear program, and studied the facial structure of two polytopes associated with the problem. Here we propose exact and heuristic separation procedures for some classes of facetdefining inequalities, which are used within a branchandcut algorithm for the exact solution of GTSP. Heuristic procedures are also described. Extensive computational results for instances taken from the literature and involving up to 442 nodes are reported.
An Efficient Approximation Algorithm for the Survivable Network Design Problem
 IN PROCEEDINGS OF THE THIRD MPS CONFERENCE ON INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION
, 1993
"... The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph ..."
Abstract

Cited by 50 (7 self)
 Add to MetaCart
The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph
Implementing the DantzigFulkersonJohnson Algorithm for Large Traveling Salesman Problems
, 2003
"... Dantzig, Fulkerson, and Johnson (1954) introduced the cuttingplane method as a means of attacking the traveling salesman problem; this method has been applied to broad classes of problems in combinatorial optimization and integer programming. In this paper we discuss an implementation of Dantzig et ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
Dantzig, Fulkerson, and Johnson (1954) introduced the cuttingplane method as a means of attacking the traveling salesman problem; this method has been applied to broad classes of problems in combinatorial optimization and integer programming. In this paper we discuss an implementation of Dantzig et al.'s method that is suitable for TSP instances having 1,000,000 or more cities. Our aim is to use the study of the TSP as a step towards understanding the applicability and limits of the general cuttingplane method in largescale applications.
GEELEN: The optimal pathmatching problem
 Proceedings o.f thirtyseventh Symposium on the Foundations of Computing, IEEE Computer
, 1996
"... We describe a common generalization of the weighted matching problem and the weighted matroid intersection problem. In this context we establish common generalizations of the main results on those two problemspolynomialtime solvability, rainmax theorems, and totally dual integral polyhedral desc ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
We describe a common generalization of the weighted matching problem and the weighted matroid intersection problem. In this context we establish common generalizations of the main results on those two problemspolynomialtime solvability, rainmax theorems, and totally dual integral polyhedral descriptions. New applications of these results include a strongly polynomial separation algorithm for the convex hull of matchable sets of a graph, and a polynomialtime algorithm to compute the rank of a certain matrix of indeterminates. 1.
TSP cuts which do not conform to the template paradigm
 IN COMPUTATIONAL COMBINATORIAL OPTIMIZATION
, 2001
"... The first computer implementation of the DantzigFulkersonJohnson cuttingplane method for solving the traveling salesman problem, written by Martin, used subtour inequalities as well as cutting planes of Gomory’s type. The practice of looking for and using cuts that match prescribed templates in c ..."
Abstract

Cited by 25 (1 self)
 Add to MetaCart
The first computer implementation of the DantzigFulkersonJohnson cuttingplane method for solving the traveling salesman problem, written by Martin, used subtour inequalities as well as cutting planes of Gomory’s type. The practice of looking for and using cuts that match prescribed templates in conjunction with Gomory cuts was continued in computer codes of Miliotis, Land, and Fleischmann. Grötschel, Padberg, and Hong advocated a different policy, where the template paradigm is the only source of cuts; furthermore, they argued for drawing the templates exclusively from the set of linear inequalities that induce facets of the TSP polytope. These policies were adopted in the work of Crowder and Padberg, in the work of Grötschel and Holland, and in the work of Padberg and Rinaldi; their computer codes produced the most impressive computational TSP successes of the nineteen eighties. Eventually, the template paradigm became the standard frame of reference for cutting planes in the TSP. The purpose of this paper is to describe a technique
SEPARATING A SUPERCLASS OF COMB INEQUALITIES IN PLANAR GRAPHS
, 2000
"... Many classes of valid and facetinducing inequalities are known for the family of polytopes associated with the Symmetric Travelling Salesman Problem (STSP), including subtour elimination, 2matching and comb inequalities. For a given class of inequalities, an exact separation algorithm is a procedu ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
Many classes of valid and facetinducing inequalities are known for the family of polytopes associated with the Symmetric Travelling Salesman Problem (STSP), including subtour elimination, 2matching and comb inequalities. For a given class of inequalities, an exact separation algorithm is a procedure which, given an LP relaxation vector x∗ , nds one or more inequalities in the class which are violated by x , or proves that none exist. Such algorithms are at the core of the highly successful branchandcut algorithms for the STSP. However, whereas polynomial time exact separation algorithms are known for subtour elimination and 2matching inequalities, the complexity of comb separation is unknown. A partial answer to the comb problem is provided in this paper. We de ne a generalization of comb inequalities and show that the associated separation problem can be solved efficiently when the subgraph induced by the edges with x ∗ e ¿0 is planar. The separation algorithm runs in O(n³) time, where n is the number of vertices in the graph.
Practical Problem Solving with Cutting Plane Algorithms in Combinatorial Optimization
, 1994
"... Cutting plane algorithms have turned out to be practically successful computational tools in combinatorial optimization, in particular, when they are embedded in a branch and bound framework. Implementations of such "branch and cut" algorithms are rather complicated in comparison to many purely comb ..."
Abstract

Cited by 20 (5 self)
 Add to MetaCart
Cutting plane algorithms have turned out to be practically successful computational tools in combinatorial optimization, in particular, when they are embedded in a branch and bound framework. Implementations of such "branch and cut" algorithms are rather complicated in comparison to many purely combinatorial algorithms. The purpose of this article is to give an introduction to cutting plane algorithms from an implementor's point of view. Special emphasis is given to control and data structures used in practically successful implementations of branch and cut algorithms. We also address the issue of parallelization. Finally, we point out that in important applications branch and cut algorithms are not only able to produce optimal solutions but also approximations to the optimum with certified good quality in moderate computation times. We close with an overview of successful practical applications in the literature.
Solving the Orienteering Problem through BranchandCut
 INFORMS Journal on Computing
, 1998
"... In the Orienteering Problem (OP) we are given an undirected graph with edge weights and node prizes. The problem calls for a simple cycle whose total edge weight does not exceed a given threshold, while visiting a subset of nodes with maximum total prize. This NPhard problem arises in routing an ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
In the Orienteering Problem (OP) we are given an undirected graph with edge weights and node prizes. The problem calls for a simple cycle whose total edge weight does not exceed a given threshold, while visiting a subset of nodes with maximum total prize. This NPhard problem arises in routing and scheduling applications.