Results 1  10
of
114
On the Solution of Traveling Salesman Problems
 DOC. MATH. J. DMV
, 1998
"... Following the theoretical studies of J.B. Robinson and H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulkerson, and S.M. Johnson demonstrated in 1954 that large instances of the TSP could be solved by linear programming. Their approach remains the only known tool for solving TS ..."
Abstract

Cited by 226 (7 self)
 Add to MetaCart
Following the theoretical studies of J.B. Robinson and H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulkerson, and S.M. Johnson demonstrated in 1954 that large instances of the TSP could be solved by linear programming. Their approach remains the only known tool for solving TSP instances with more than several hundred cities; over the years, it has evolved further through the work of M. Grötschel , S. Hong , M. Jünger , P. Miliotis , D. Naddef , M. Padberg ... some of its refinements that led to the solution of a 13,509city instance.
A BranchandCut Algorithm for the Symmetric Generalized Travelling Salesman Problem
, 1995
"... We consider a variant of the classical symmetric Travelling Salesman Problem in which the nodes are partitioned into clusters and the salesman has to visit at least one node for each cluster. This NPhard problem is known in the literature as the symmetric Generalized Travelling Salesman Problem (GT ..."
Abstract

Cited by 75 (4 self)
 Add to MetaCart
We consider a variant of the classical symmetric Travelling Salesman Problem in which the nodes are partitioned into clusters and the salesman has to visit at least one node for each cluster. This NPhard problem is known in the literature as the symmetric Generalized Travelling Salesman Problem (GTSP), and finds practical applications in routing, scheduling and locationrouting. In a companion paper [5] we modeled GTSP as an integer linear program, and studied the facial structure of two polytopes associated with the problem. Here we propose exact and heuristic separation procedures for some classes of facetdefining inequalities, which are used within a branchandcut algorithm for the exact solution of GTSP. Heuristic procedures are also described. Extensive computational results for instances taken from the literature and involving up to 442 nodes are reported.
An Efficient Approximation Algorithm for the Survivable Network Design Problem
 IN PROCEEDINGS OF THE THIRD MPS CONFERENCE ON INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION
, 1993
"... The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph ..."
Abstract

Cited by 57 (6 self)
 Add to MetaCart
The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph
Robust branchandcutandprice for the capacitated vehicle routing problem
 IN PROCEEDINGS OF THE INTERNATIONAL NETWORK OPTIMIZATION CONFERENCE
, 2003
"... During the eigthies and early nineties, the best exact algorithms for the Capacitated Vehicle Routing Problem (CVRP) utilized lower bounds obtained by Lagrangean relaxation or column generation. Next, the advances in the polyhedral description of the CVRP yielded branchandcut algorithms giving bett ..."
Abstract

Cited by 55 (14 self)
 Add to MetaCart
(Show Context)
During the eigthies and early nineties, the best exact algorithms for the Capacitated Vehicle Routing Problem (CVRP) utilized lower bounds obtained by Lagrangean relaxation or column generation. Next, the advances in the polyhedral description of the CVRP yielded branchandcut algorithms giving better results. However, several instances in the range of 50–80 vertices, some proposed more than 30 years ago, can not be solved with current known techniques. This paper presents an algorithm utilizing a lower bound obtained by minimizing over the intersection of the polytopes associated to a traditional Lagrangean relaxation over qroutes and the one defined by bounds, degree and the capacity constraints. This is equivalent to a linear program with an exponential number of both variables and constraints. Computational experiments show the new lower bound to be superior to the previous ones, specially when the number of vehicles is large. The resulting branchandcutandprice could solve to optimality almost all instances from the literature up to 100 vertices, nearly doubling the size of the instances that can be consistently solved. Further progress in this algorithm may be soon obtained by also using other known families of inequalities.
Computational and Statistical Tradeoffs via Convex Relaxation
, 2012
"... In modern data analysis, one is frequently faced with statistical inference problems involving massive datasets. Processing such large datasets is usually viewed as a substantial computational challenge. However, if data are a statistician’s main resource then access to more data should be viewed as ..."
Abstract

Cited by 40 (1 self)
 Add to MetaCart
In modern data analysis, one is frequently faced with statistical inference problems involving massive datasets. Processing such large datasets is usually viewed as a substantial computational challenge. However, if data are a statistician’s main resource then access to more data should be viewed as an asset rather than as a burden. In this paper we describe a computational framework based on convex relaxation to reduce the computational complexity of an inference procedure when one has access to increasingly larger datasets. Convex relaxation techniques have been widely used in theoretical computer science as they give tractable approximation algorithms to many computationally intractable tasks. We demonstrate the efficacy of this methodology in statistical estimation in providing concrete timedata tradeoffs in a class of denoising problems. Thus, convex relaxation offers a principled approach to exploit the statistical gains from larger datasets to reduce the runtime of inference algorithms.
Implementing the DantzigFulkersonJohnson Algorithm for Large Traveling Salesman Problems
, 2003
"... Dantzig, Fulkerson, and Johnson (1954) introduced the cuttingplane method as a means of attacking the traveling salesman problem; this method has been applied to broad classes of problems in combinatorial optimization and integer programming. In this paper we discuss an implementation of Dantzig et ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
Dantzig, Fulkerson, and Johnson (1954) introduced the cuttingplane method as a means of attacking the traveling salesman problem; this method has been applied to broad classes of problems in combinatorial optimization and integer programming. In this paper we discuss an implementation of Dantzig et al.'s method that is suitable for TSP instances having 1,000,000 or more cities. Our aim is to use the study of the TSP as a step towards understanding the applicability and limits of the general cuttingplane method in largescale applications.
Solving the Orienteering Problem through BranchandCut
 INFORMS Journal on Computing
, 1998
"... In the Orienteering Problem (OP) we are given an undirected graph with edge weights and node prizes. The problem calls for a simple cycle whose total edge weight does not exceed a given threshold, while visiting a subset of nodes with maximum total prize. This NPhard problem arises in routing an ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
In the Orienteering Problem (OP) we are given an undirected graph with edge weights and node prizes. The problem calls for a simple cycle whose total edge weight does not exceed a given threshold, while visiting a subset of nodes with maximum total prize. This NPhard problem arises in routing and scheduling applications.
Extended Formulations in Combinatorial Optimization
, 2009
"... This survey is concerned with the size of perfect formulations for combinatorial optimization problems. By ”perfect formulation”, we mean a system of linear inequalities that describes the convex hull of feasible solutions, viewed as vectors. Natural perfect formulations often have a number of inequ ..."
Abstract

Cited by 30 (1 self)
 Add to MetaCart
(Show Context)
This survey is concerned with the size of perfect formulations for combinatorial optimization problems. By ”perfect formulation”, we mean a system of linear inequalities that describes the convex hull of feasible solutions, viewed as vectors. Natural perfect formulations often have a number of inequalities that is exponential in the size of the data needed to describe the problem. Here we are particularly interested in situations where the addition of a polynomial number of extra variables allows a formulation with a polynomial number of inequalities. Such formulations are called ”compact extended formulations”. We survey various tools for deriving and studying extended formulations, such as Fourier’s procedure for projection, MinkowskiWeyl’s theorem, Balas ’ theorem for the union of polyhedra, Yannakakis ’ theorem on the size of an extended formulation, dynamic programming, and variable discretization. For each tool that we introduce, we present one or several examples of how this tool is applied. In particular, we present compact extended formulations for several graph problems involving cuts, trees, cycles and matchings, and for the mixing set. We also present Bienstock’s approximate compact extended formulation for the knapsack problem, Goemans ’ result on the size of an extended formulation for the permutahedron, and the FaenzaKaibel extended formulation for orbitopes. Supported by the Progetto di Eccellenza 20082009 of the Fondazione Cassa di Risparmio di Padova e