Results 1 
4 of
4
Constructivism and Proof Theory
, 2003
"... Introduction to the constructive point of view in the foundations of mathematics, in
particular intuitionism due to L.E.J. Brouwer, constructive recursive mathematics
due to A.A. Markov, and Bishop’s constructive mathematics. The constructive interpretation
and formalization of logic is described. F ..."
Abstract

Cited by 162 (4 self)
 Add to MetaCart
Introduction to the constructive point of view in the foundations of mathematics, in
particular intuitionism due to L.E.J. Brouwer, constructive recursive mathematics
due to A.A. Markov, and Bishop’s constructive mathematics. The constructive interpretation
and formalization of logic is described. For constructive (intuitionistic)
arithmetic, Kleene’s realizability interpretation is given; this provides an example
of the possibility of a constructive mathematical practice which diverges from classical
mathematics. The crucial notion in intuitionistic analysis, choice sequence, is
briefly described and some principles which are valid for choice sequences are discussed.
The second half of the article deals with some aspects of proof theory, i.e.,
the study of formal proofs as combinatorial objects. Gentzen’s fundamental contributions
are outlined: his introduction of the socalled Gentzen systems which use
sequents instead of formulas and his result on firstorder arithmetic showing that
(suitably formalized) transfinite induction up to the ordinal "0 cannot be proved in
firstorder arithmetic.
On the NoCounterexample Interpretation
 J. SYMBOLIC LOGIC
, 1997
"... In [15],[16] Kreisel introduced the nocounterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated "substitution method (due to W. Ackermann), that for every theorem A (A prenex) of firstorder Peano arithmetic PA one can find ordinal recursive f ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
In [15],[16] Kreisel introduced the nocounterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated "substitution method (due to W. Ackermann), that for every theorem A (A prenex) of firstorder Peano arithmetic PA one can find ordinal recursive functionals \Phi A of order type ! " 0 which realize the Herbrand normal form A of A. Subsequently more
Abstract Datatypes for Real Numbers in Type Theory
"... Abstract. We propose an abstract datatype for a closed interval of real numbers to type theory, providing a representationindependent approach to programming with real numbers. The abstract datatype requires only function types and a natural numbers type for its formulation, and so can be added to ..."
Abstract
 Add to MetaCart
Abstract. We propose an abstract datatype for a closed interval of real numbers to type theory, providing a representationindependent approach to programming with real numbers. The abstract datatype requires only function types and a natural numbers type for its formulation, and so can be added to any type theory that extends Gödel’s System datatype is equivalent in power to programming intensionally with representations of real numbers. We also consider representing arbitrary real numbers using a mantissaexponent representation in which the mantissa is taken from the abstract interval. 1