Results 1 
8 of
8
Lower Bounds for the Computational Power of Networks of Spiking Neurons
 Neural Computation
, 1995
"... We investigate the computational power of a formal model for networks of spiking neurons. It is shown that simple operations on phasedifferences between spiketrains provide a very powerful computational tool that can in principle be used to carry out highly complex computations on a small network o ..."
Abstract

Cited by 53 (11 self)
 Add to MetaCart
We investigate the computational power of a formal model for networks of spiking neurons. It is shown that simple operations on phasedifferences between spiketrains provide a very powerful computational tool that can in principle be used to carry out highly complex computations on a small network of spiking neurons. We construct networks of spiking neurons that simulate arbitrary threshold circuits, Turing machines, and a certain type of random access machines with real valued inputs. We also show that relatively weak basic assumptions about the response and thresholdfunctions of the spiking neurons are sufficient in order to employ them for such computations. 1 Introduction and Basic Definitions There exists substantial evidence that timing phenomena such as temporal differences between spikes and frequencies of oscillating subsystems are integral parts of various information processing mechanisms in biological neural systems (for a survey and references see e.g. Kandel et al., ...
What Is an Algorithm?
, 2000
"... Machines and Recursive Definitions 2.1 Abstract Machines The bestknown model of mechanical computation is (still) the first, introduced by Turing [18], and after half a century of study, few doubt the truth of the fundamental ChurchTuring Thesis : A function f : N # N on the natural numbers (o ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
Machines and Recursive Definitions 2.1 Abstract Machines The bestknown model of mechanical computation is (still) the first, introduced by Turing [18], and after half a century of study, few doubt the truth of the fundamental ChurchTuring Thesis : A function f : N # N on the natural numbers (or, more generally, on strings from a finite alphabet) is computable in principle exactly when it can be computed by a Turing Machine. The ChurchTuring Thesis grounds proofs of undecidability and it is essential for the most important applications of logic. On the other hand, it cannot be argued seriously that Turing machines model faithfully all algorithms on the natural numbers. If, for example, we code the input n in binary (rather than unary) notation, then the time needed for the computation of f(n) can sometimes be considerably shortened; and if we let the machine use two tapes rather than one, then (in some cases) we may gain a quadratic speedup of the computation, see [8]. This mea...
On Founding the Theory of Algorithms
, 1998
"... machines and implementations The first definition of an abstract machine was given by Turing, in the classic [20]. Without repeating here the wellknown definition (e.g., see [6]), 13 we recall that each Turing machine M is equipped with a "semiinfinite tape" which it uses both to compute and al ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
machines and implementations The first definition of an abstract machine was given by Turing, in the classic [20]. Without repeating here the wellknown definition (e.g., see [6]), 13 we recall that each Turing machine M is equipped with a "semiinfinite tape" which it uses both to compute and also to communicate with its environment: To determine the value f(n) (if any) of the partial function 14 f : N * N computed by M , we put n on the tape in some standard way, e.g., by placing n + 1 consecutive 1s at its beginning; we start the machine in some specified, initial, internal state q 0 and looking at the leftmost end of the tape; and we wait until the machine stops (if it does), at which time the value f(n) can be read off the tape, by counting the successive 1s at the left end. Turing argued that the numbertheoretic functions which can (in principle) be computed by any deterministic, physical device are exactly those which can be computed by a Turing machine, and the correspon...
Two Heads are Better than Two Tapes
, 1994
"... . We show that a Turing machine with two singlehead onedimensional tapes cannot recognize the set f x2x 0 j x 2 f0; 1g and x 0 is a prefix of x g in real time, although it can do so with three tapes, two twodimensional tapes, or one twohead tape, or in linear time with just one tape. In ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
. We show that a Turing machine with two singlehead onedimensional tapes cannot recognize the set f x2x 0 j x 2 f0; 1g and x 0 is a prefix of x g in real time, although it can do so with three tapes, two twodimensional tapes, or one twohead tape, or in linear time with just one tape. In particular, this settles the longstanding conjecture that a twohead Turing machine can recognize more languages in real time if its heads are on the same onedimensional tape than if they are on separate onedimensional tapes. 1. Introduction The Turing machines commonly used and studied in computer science have separate tapes for input/output and for storage, so that we can conveniently study both storage as a dynamic resource and the more complex storage structures required for efficient implementation of practical algorithms [HS65]. Early researchers [MRF67] asked specifically whether twohead storage is more powerful if both heads are on the same onedimensional storage tape than if t...
A Note on Time and Space
"... In this paper we show that singletape nondeterministic time T (n) bounded Turing Machines can be simulated on singletape nondeterministic p T (n) spacebounded Turing Machines in time T (n). 0.1 Introduction Determining the relationship between recognizing power of resourcebounded machines is ..."
Abstract
 Add to MetaCart
In this paper we show that singletape nondeterministic time T (n) bounded Turing Machines can be simulated on singletape nondeterministic p T (n) spacebounded Turing Machines in time T (n). 0.1 Introduction Determining the relationship between recognizing power of resourcebounded machines is a central and long standing open problem in Computational Complexity Theory. The study of different machine models for sequential computation is essential to obtain a modelindependent complexity theory, or to translate results obtained for one model directly to other models without proving them again. Many theorems have been proved on the relation between different variants of the Turing Machine model. For a Turing Machine (TM for short) time is measured by the number of transitions in a computation and space is measured by the number of different tape cells visited by the head(s) during the computation As far as space is concerned all different models can simulate each other with constan...
On Founding the Theory of Algorithms
, 1998
"... machines and implementations The first definition of an abstract machine was given by Turing, in the classic [20]. Without repeating here the wellknown definition (e.g., see [6]), we recall that each Turing machine M is equipped with a "semiinfinite tape" which it uses both to compute and also ..."
Abstract
 Add to MetaCart
machines and implementations The first definition of an abstract machine was given by Turing, in the classic [20]. Without repeating here the wellknown definition (e.g., see [6]), we recall that each Turing machine M is equipped with a "semiinfinite tape" which it uses both to compute and also to communicate with its environment: To determine the value f(n) (if any) of the partial function f : N * N computed by M , we put n on the tape in some standard way, e.g., by placing n + 1 consecutive 1s at its beginning; we start the machine in some specified, initial, internal state q 0 and looking at the leftmost end of the tape; and we wait until the machine stops (if it does), at which time the value f(n) can be read off the tape, by counting the successive 1s at the left end. Turing argued that the numbertheoretic functions which can (in principle) be computed by any deterministic, physical device are exactly those which can be computed by a Turing machine, and the corresponding version of this claim for partial functions has come to be known as the ChurchTuring Thesis, because an equivalent claim was made by Church at about the same time. Turing's brilliant analysis of "mechanical computation" in [20] and a huge body of work in the last sixty years has established the truth of the ChurchTuring Thesis beyond reasonable doubt; it is of immense importance in the derivation of foundationally significant undecidability results from technical theorems about Turing machines, and it has been called "the first natural law of pure mathematics." Turing machines capture the notion of mechanical computability of numbertheoretic functions, by the ChurchTuring Thesis, but they do not model faith It has also been suggested that we do not need algorithms, only the equival...
1 What Is an Algorithm?
"... When algorithms are defined rigorously in Computer Science literature machines, mathematical models of computers, sometimes idealized by allowing access to “unbounded memory”. 1 My aims here are to argue ..."
Abstract
 Add to MetaCart
When algorithms are defined rigorously in Computer Science literature machines, mathematical models of computers, sometimes idealized by allowing access to “unbounded memory”. 1 My aims here are to argue