Results 1  10
of
133
Geometric Range Searching and Its Relatives
 CONTEMPORARY MATHEMATICS
"... ... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems. ..."
Abstract

Cited by 257 (41 self)
 Add to MetaCart
... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems.
Compressed fulltext indexes
 ACM COMPUTING SURVEYS
, 2007
"... Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text l ..."
Abstract

Cited by 180 (81 self)
 Add to MetaCart
Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text length. This concept has evolved into selfindexes, which in addition contain enough information to reproduce any text portion, so they replace the text. The exciting possibility of an index that takes space close to that of the compressed text, replaces it, and in addition provides fast search over it, has triggered a wealth of activity and produced surprising results in a very short time, and radically changed the status of this area in less than five years. The most successful indexes nowadays are able to obtain almost optimal space and search time simultaneously. In this paper we present the main concepts underlying selfindexes. We explain the relationship between text entropy and regularities that show up in index structures and permit compressing them. Then we cover the most relevant selfindexes up to date, focusing on the essential aspects on how they exploit the text compressibility and how they solve efficiently various search problems. We aim at giving the theoretical background to understand and follow the developments in this area.
An optimal algorithm for intersecting line segments in the plane
 J. ACM
, 1992
"... Abstract. Themain contribution ofthiswork is an O(nlogr ~ +k)timeal gorithmfo rcomputingall k intersections among n line segments in the plane, This time complexity IS easdy shown to be optimal. Within thesame asymptotic cost, ouralgorithm canalso construct thesubdiwslon of theplancdefmed by the se ..."
Abstract

Cited by 170 (2 self)
 Add to MetaCart
Abstract. Themain contribution ofthiswork is an O(nlogr ~ +k)timeal gorithmfo rcomputingall k intersections among n line segments in the plane, This time complexity IS easdy shown to be optimal. Within thesame asymptotic cost, ouralgorithm canalso construct thesubdiwslon of theplancdefmed by the segments and compute which segment (if any) lies right above (or below) each intersection and each endpoint. The algorithm has been implemented and performs very well. The storage requirement is on the order of n + k in the worst case, but it is considerably lower in practice. To analyze the complexity of the algorithm, an amortization argument based on a new combinatorial theorem on line arrangements is used.
External Memory Data Structures
, 2001
"... In many massive dataset applications the data must be stored in space and query efficient data structures on external storage devices. Often the data needs to be changed dynamically. In this chapter we discuss recent advances in the development of provably worstcase efficient external memory dynami ..."
Abstract

Cited by 83 (37 self)
 Add to MetaCart
In many massive dataset applications the data must be stored in space and query efficient data structures on external storage devices. Often the data needs to be changed dynamically. In this chapter we discuss recent advances in the development of provably worstcase efficient external memory dynamic data structures. We also briefly discuss some of the most popular external data structures used in practice.
Range Searching
, 1996
"... Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , an ..."
Abstract

Cited by 71 (1 self)
 Add to MetaCart
Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , and let R be a family of subsets; elements of R are called ranges . We wish to preprocess S into a data structure so that for a query range R, the points in S " R can be reported or counted efficiently. Typical examples of ranges include rectangles, halfspaces, simplices, and balls. If we are only interested in answering a single query, it can be done in linear time, using linear space, by simply checking for each point p 2 S whether p lies in the query range.
ClosestPoint Problems in Computational Geometry
, 1997
"... This is the preliminary version of a chapter that will appear in the Handbook on Computational Geometry, edited by J.R. Sack and J. Urrutia. A comprehensive overview is given of algorithms and data structures for proximity problems on point sets in IR D . In particular, the closest pair problem, th ..."
Abstract

Cited by 68 (14 self)
 Add to MetaCart
This is the preliminary version of a chapter that will appear in the Handbook on Computational Geometry, edited by J.R. Sack and J. Urrutia. A comprehensive overview is given of algorithms and data structures for proximity problems on point sets in IR D . In particular, the closest pair problem, the exact and approximate postoffice problem, and the problem of constructing spanners are discussed in detail. Contents 1 Introduction 1 2 The static closest pair problem 4 2.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Algorithms that are optimal in the algebraic computation tree model . 5 2.2.1 An algorithm based on the Voronoi diagram . . . . . . . . . . . 5 2.2.2 A divideandconquer algorithm . . . . . . . . . . . . . . . . . . 5 2.2.3 A plane sweep algorithm . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A deterministic algorithm that uses indirect addressing . . . . . . . . . 7 2.3.1 The degraded grid . . . . . . . . . . . . . . . . . . ...
New data structures for orthogonal range searching
 In Proc. 41st IEEE Symposium on Foundations of Computer Science
, 2000
"... ..."
PiecewiseLinear Interpolation between Polygonal Slices
 Computer Vision and Image Understanding
, 1994
"... In this paper we present a new technique for piecewiselinear surface reconstruction from a series of parallel polygonal crosssections. This is an important problem in medical imaging, surface reconstruction from topographic data, and other applications. We reduce the problem, as in most previous wo ..."
Abstract

Cited by 67 (12 self)
 Add to MetaCart
In this paper we present a new technique for piecewiselinear surface reconstruction from a series of parallel polygonal crosssections. This is an important problem in medical imaging, surface reconstruction from topographic data, and other applications. We reduce the problem, as in most previous works, to a series of problems of piecewiselinear interpolation between each pair of successive slices. Our algorithm uses a partial curve matching technique for matching parts of the contours, an optimal triangulation of 3D polygons for resolving the unmatched parts, and a minimum spanning tree heuristic for interpolating between non simply connected regions. Unlike previous attempts at solving this problem, our algorithm seems to handle successfully any kind of data. It allows multiple contours in each slice, with any hierarchy of contour nesting, and avoids the introduction of counterintuitive bridges between contours, proposed in some earlier papers to handle interpolation between multi...
Indexing Text using the ZivLempel Trie
 Journal of Discrete Algorithms
, 2002
"... Let a text of u characters over an alphabet of size be compressible to n symbols by the LZ78 or LZW algorithm. We show that it is possible to build a data structure based on the ZivLempel trie that takes 4n log 2 n(1+o(1)) bits of space and reports the R occurrences of a pattern of length m in ..."
Abstract

Cited by 66 (43 self)
 Add to MetaCart
Let a text of u characters over an alphabet of size be compressible to n symbols by the LZ78 or LZW algorithm. We show that it is possible to build a data structure based on the ZivLempel trie that takes 4n log 2 n(1+o(1)) bits of space and reports the R occurrences of a pattern of length m in worst case time O(m log(m)+(m+R)log n).
Lower bounds for orthogonal range searching: I. the reporting case
 Journal of the ACM
, 1990
"... Abstract. We establish lower bounds on the complexity of orthogonal range reporting in the static case. Given a collection of n points in dspace and a box [a,, b,] x. x [ad, bd], report every point whose ith coordinate lies in [a,, biJ, for each i = 1,..., d. The collection of points is fixed once ..."
Abstract

Cited by 65 (4 self)
 Add to MetaCart
Abstract. We establish lower bounds on the complexity of orthogonal range reporting in the static case. Given a collection of n points in dspace and a box [a,, b,] x. x [ad, bd], report every point whose ith coordinate lies in [a,, biJ, for each i = 1,..., d. The collection of points is fixed once and for all and can be preprocessed. The box, on the other hand, constitutes a query that must be answered online. It is shown that on a pointer machine a query time of O(k + polylog(n)), where k is the number of points to be reported, can only be achieved at the expense of fl(n(logn/loglogn)d‘) storage. Interestingly, these bounds are optimal in the pointer machine model, but they can be improved (ever so slightly) on a random access machine. In a companion paper, we address the related problem of adding up weights assigned to the points in the query box.