Results 1  10
of
199
Modeling and Forecasting Realized Volatility
, 2002
"... this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are a ..."
Abstract

Cited by 297 (33 self)
 Add to MetaCart
this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are approximately Gaussian. Third, the longrun dynamics of realized logarithmic volatilities are well approximated by a fractionallyintegrated longmemory process. Motivated by the three ABDL empirical regularities, we proceed to estimate and evaluate a multivariate model for the logarithmic realized volatilities: a fractionallyintegrated Gaussian vector autoregression (VAR) . Importantly, our approach explicitly permits measurement errors in the realized volatilities. Comparing the resulting volatility forecasts to those obtained from currently popular daily volatility models and more complicated highfrequency models, we find that our simple Gaussian VAR forecasts generally produce superior forecasts. Furthermore, we show that, given the theoretically motivated and empirically plausible assumption of normally distributed returns conditional on the realized volatilities, the resulting lognormalnormal mixture forecast distribution provides conditionally wellcalibrated density forecasts of returns, from which we obtain accurate estimates of conditional return quantiles. In the remainder of this paper, we proceed as follows. We begin in section 2 by formally developing the relevant quadratic variation theory within a standard frictionless arbitragefree multivariate pricing environment. In section 3 we discuss the practical construction of realized volatilities from highfrequency foreign exchange returns. Next, in section 4 we summarize the salient distributional features of r...
The Distribution of Realized Exchange Rate Volatility
 Journal of the American Statistical Association
, 2001
"... Using highfrequency data on deutschemark and yen returns against the dollar, we construct modelfree estimates of daily exchange rate volatility and correlation that cover an entire decade. Our estimates, termed realized volatilities and correlations, are not only modelfree, but also approximately ..."
Abstract

Cited by 167 (19 self)
 Add to MetaCart
Using highfrequency data on deutschemark and yen returns against the dollar, we construct modelfree estimates of daily exchange rate volatility and correlation that cover an entire decade. Our estimates, termed realized volatilities and correlations, are not only modelfree, but also approximately free of measurement error under general conditions, which we discuss in detail. Hence, for practical purposes, we may treat the exchange rate volatilities and correlations as observed rather than latent. We do so, and we characterize their joint distribution, both unconditionally and conditionally. Noteworthy results include a simple normalityinducing volatility transformation, high contemporaneous correlation across volatilities, high correlation between correlation and volatilities, pronounced and persistent dynamics in volatilities and correlations, evidence of longmemory dynamics in volatilities and correlations, and remarkably precise scaling laws under temporal aggregation.
On the Detection and Estimation of Long Memory in Stochastic Volatility
, 1995
"... Recent studies have suggested that stock markets' volatility has a type of longrange dependence that is not appropriately described by the usual Generalized Autoregressive Conditional Heteroskedastic (GARCH) and Exponential GARCH (EGARCH) models. In this paper, different models for describing ..."
Abstract

Cited by 132 (6 self)
 Add to MetaCart
Recent studies have suggested that stock markets' volatility has a type of longrange dependence that is not appropriately described by the usual Generalized Autoregressive Conditional Heteroskedastic (GARCH) and Exponential GARCH (EGARCH) models. In this paper, different models for describing this longrange dependence are examined and the properties of a LongMemory Stochastic Volatility (LMSV) model, constructed by incorporating an Autoregressive Fractionally Integrated Moving Average (ARFIMA) process in a stochastic volatility scheme, are discussed. Strongly consistent estimators for the parameters of this LMSV model are obtained by maximizing the spectral likelihood. The distribution of the estimators is analyzed by means of a Monte Carlo study. The LMSV is applied to daily stock market returns providing an improved description of the volatility behavior. In order to assess the empirical relevance of this approach, tests for longmemory volatility are described and applied to an e...
The distribution of realized stock return volatility
, 2001
"... We examine "realized" daily equity return volatilities and correlations obtained from highfrequency intraday transaction prices on individual stocks in the Dow Jones ..."
Abstract

Cited by 122 (9 self)
 Add to MetaCart
We examine "realized" daily equity return volatilities and correlations obtained from highfrequency intraday transaction prices on individual stocks in the Dow Jones
Exact local Whittle estimation of fractional integration
, 2005
"... An exact form of the local Whittle likelihood is studied with the intent of developing a generalpurpose estimation procedure for the memory parameter (d) that does not rely on tapering or differencing prefilters. The resulting exact local Whittle estimator is shown to be consistent and to have the ..."
Abstract

Cited by 57 (12 self)
 Add to MetaCart
An exact form of the local Whittle likelihood is studied with the intent of developing a generalpurpose estimation procedure for the memory parameter (d) that does not rely on tapering or differencing prefilters. The resulting exact local Whittle estimator is shown to be consistent and to have the same N(0, 1/4) limit distribution for all values of d if the optimization covers an interval of width less than 9/2 and the initial value of the process is known.
NarrowBand Analysis Of Nonstationary Processes
, 1999
"... The behaviour of averaged periodograms and crossperiodograms of a broad class of nonstationary processes is studied. The processes include nonstationary ones that are fractional of any order, as well as asymptotically stationary fractional ones, and the crossperiodogram can involve two nonstationa ..."
Abstract

Cited by 37 (13 self)
 Add to MetaCart
The behaviour of averaged periodograms and crossperiodograms of a broad class of nonstationary processes is studied. The processes include nonstationary ones that are fractional of any order, as well as asymptotically stationary fractional ones, and the crossperiodogram can involve two nonstationary processes of possibly di#erent orders, or a nonstationary and an asymptotically stationary one. The averaging takes place either over the whole frequency band, or on one that degenerates slowly to zero frequency as sample size increases. In some cases it is found to make no asymptotic di#erence, and in particular we indicate how the behaviour of the mean and variance changes across the twodimensional space of integration orders. The results employ only localtozero assumptions on the spectra of the underlying weakly stationary sequences. It is shown how the results can be readily applied in case of fractional cointegration with unknown integration orders. 1 1. INTRODUCTION In the analy...
Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of the Longmemory Parameter
 Journal of Forecasting
, 1999
"... We develop an ordinary least squares estimator of the long memory parameter from a fractionally integrated process that is an alternative to the Geweke PorterHudak estimator. Using the wavelet transform from a fractionally integrated process, we establish a loglinear relationship between the wavel ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
We develop an ordinary least squares estimator of the long memory parameter from a fractionally integrated process that is an alternative to the Geweke PorterHudak estimator. Using the wavelet transform from a fractionally integrated process, we establish a loglinear relationship between the wavelet coe cients ' variance and the scaling parameter equal to the long memory parameter. This loglinear relationship yields a consistent ordinary least squares estimator of the long memory parameter when the wavelet coe cients ' population variance is replaced by their sample variance. We derive the small sample bias and variance of the ordinary least squares estimator and test it against the Geweke PorterHudak estimator and the McCoy Walden maximum likelihood wavelet estimator by conducting a numberofMonte Carlo experiments. Based upon the criterion of choosing the estimator which minimizes the mean squared error, the wavelet OLS approach was superior to the Geweke PorterHudak estimator, but inferior to the McCoy Walden wavelet estimator for the processes simulated. However, given the simplicity of programming and running the wavelet OLS estimator and its statistical inference of the long memory parameter we feel the general practitioner will be attracted to wavelet OLS estimator. Keywords