Results 1 
2 of
2
DynFO: A Parallel, Dynamic Complexity Class
 Journal of Computer and System Sciences
, 1994
"... Traditionally, computational complexity has considered only static problems. Classical Complexity Classes such as NC, P, and NP are defined in terms of the complexity of checking  upon presentation of an entire input  whether the input satisfies a certain property. For many applications of compu ..."
Abstract

Cited by 49 (4 self)
 Add to MetaCart
(Show Context)
Traditionally, computational complexity has considered only static problems. Classical Complexity Classes such as NC, P, and NP are defined in terms of the complexity of checking  upon presentation of an entire input  whether the input satisfies a certain property. For many applications of computers it is more appropriate to model the process as a dynamic one. There is a fairly large object being worked on over a period of time. The object is repeatedly modified by users and computations are performed. We develop a theory of Dynamic Complexity. We study the new complexity class, Dynamic FirstOrder Logic (DynFO). This is the set of properties that can be maintained and queried in firstorder logic, i.e. relational calculus, on a relational database. We show that many interesting properties are in DynFO including multiplication, graph connectivity, bipartiteness, and the computation of minimum spanning trees. Note that none of these problems is in static FO, and this f...
Lower Bounds for Fully Dynamic Connectivity Problems in Graphs
, 1998
"... We prove lower bounds on the complexity of maintaining fully dynamic kedge or kvertex connectivity in plane graphs and in (k − 1)vertex connected graphs. We show an amortized lower bound of �(log n/k(log log n + log b)) per edge insertion, deletion, or query operation in the cell probe model, whe ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
We prove lower bounds on the complexity of maintaining fully dynamic kedge or kvertex connectivity in plane graphs and in (k − 1)vertex connected graphs. We show an amortized lower bound of �(log n/k(log log n + log b)) per edge insertion, deletion, or query operation in the cell probe model, where b is the word size of the machine and n is the number of vertices in G. We also show an amortized lower bound of �(log n/(log log n + log b)) per operation for fully dynamic planarity testing in embedded graphs. These are the first lower bounds for fully dynamic connectivity problems.