Results 1  10
of
52
Higher dimensional algebra III: ncategories and the algebra of opetopes
, 1997
"... We give a definition of weak ncategories based on the theory of operads. We work with operads having an arbitrary set S of types, or ‘Soperads’, and given such an operad O, we denote its set of operations by elt(O). Then for any Soperad O there is an elt(O)operad O + whose algebras are Soperads ..."
Abstract

Cited by 74 (6 self)
 Add to MetaCart
We give a definition of weak ncategories based on the theory of operads. We work with operads having an arbitrary set S of types, or ‘Soperads’, and given such an operad O, we denote its set of operations by elt(O). Then for any Soperad O there is an elt(O)operad O + whose algebras are Soperads over O. Letting I be the initial operad with a oneelement set of types, and defining I 0+ = I, I (i+1)+ = (I i+) +, we call the operations of I (n−1)+ the ‘ndimensional opetopes’. Opetopes form a category, and presheaves on this category are called ‘opetopic sets’. A weak ncategory is defined as an opetopic set with certain properties, in a manner reminiscent of Street’s simplicial approach to weak ωcategories. In a similar manner, starting from an arbitrary operad O instead of I, we define ‘ncoherent Oalgebras’, which are n times categorified analogs of algebras of O. Examples include ‘monoidal ncategories’, ‘stable ncategories’, ‘virtual nfunctors ’ and ‘representable nprestacks’. We also describe how ncoherent Oalgebra objects may be defined in any (n + 1)coherent Oalgebra.
Higherdimensional algebra VI: Lie 2algebras,
, 2004
"... The theory of Lie algebras can be categorified starting from a new notion of ‘2vector space’, which we define as an internal category in Vect. There is a 2category 2Vect having these 2vector spaces as objects, ‘linear functors’ as morphisms and ‘linear natural transformations ’ as 2morphisms. We ..."
Abstract

Cited by 44 (12 self)
 Add to MetaCart
The theory of Lie algebras can be categorified starting from a new notion of ‘2vector space’, which we define as an internal category in Vect. There is a 2category 2Vect having these 2vector spaces as objects, ‘linear functors’ as morphisms and ‘linear natural transformations ’ as 2morphisms. We define a ‘semistrict Lie 2algebra ’ to be a 2vector space L equipped with a skewsymmetric bilinear functor [·, ·]: L × L → L satisfying the Jacobi identity up to a completely antisymmetric trilinear natural transformation called the ‘Jacobiator’, which in turn must satisfy a certain law of its own. This law is closely related to the Zamolodchikov tetrahedron equation, and indeed we prove that any semistrict Lie 2algebra gives a solution of this equation, just as any Lie algebra gives a solution of the Yang–Baxter equation. We construct a 2category of semistrict Lie 2algebras and prove that it is 2equivalent to the 2category of 2term L∞algebras in the sense of Stasheff. We also study strict and skeletal Lie 2algebras, obtaining the former from strict Lie 2groups and using the latter to classify Lie 2algebras in terms of 3rd cohomology classes in Lie algebra cohomology. This classification allows us to construct for any finitedimensional Lie algebra g a canonical 1parameter family of Lie 2algebras g � which reduces to g at � = 0. These are closely related to the 2groups G � constructed in a companion paper.
Higherdimensional algebra II: 2Hilbert spaces
"... A 2Hilbert space is a category with structures and properties analogous to those of a Hilbert space. More precisely, we define a 2Hilbert space to be an abelian category enriched over Hilb with a ∗structure, conjugatelinear on the homsets, satisfying 〈fg,h 〉 = 〈g,f ∗ h 〉 = 〈f,hg ∗ 〉. We also ..."
Abstract

Cited by 42 (12 self)
 Add to MetaCart
A 2Hilbert space is a category with structures and properties analogous to those of a Hilbert space. More precisely, we define a 2Hilbert space to be an abelian category enriched over Hilb with a ∗structure, conjugatelinear on the homsets, satisfying 〈fg,h 〉 = 〈g,f ∗ h 〉 = 〈f,hg ∗ 〉. We also define monoidal, braided monoidal, and symmetric monoidal versions of 2Hilbert spaces, which we call 2H*algebras, braided 2H*algebras, and symmetric 2H*algebras, and we describe the relation between these and tangles in 2, 3, and 4 dimensions, respectively. We prove a generalized DoplicherRoberts theorem stating that every symmetric 2H*algebra is equivalent to the category Rep(G) of continuous unitary finitedimensional representations of some compact supergroupoid G. The equivalence is given by a categorified version of the Gelfand transform; we also construct a categorified version of the Fourier transform when G is a compact abelian group. Finally, we characterize Rep(G) by its universal properties when G is a compact classical group. For example, Rep(U(n)) is the free connected symmetric 2H*algebra on one even object of dimension n. 1
Higherdimensional algebra IV: 2Tangles
"... Just as knots and links can be algebraically described as certain morphisms in the category of tangles in 3 dimensions, compact surfaces smoothly embedded in R 4 can be described as certain 2morphisms in the 2category of ‘2tangles in 4 dimensions’. Using the work of Carter, Rieger and Saito, we p ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Just as knots and links can be algebraically described as certain morphisms in the category of tangles in 3 dimensions, compact surfaces smoothly embedded in R 4 can be described as certain 2morphisms in the 2category of ‘2tangles in 4 dimensions’. Using the work of Carter, Rieger and Saito, we prove that this 2category is the ‘free semistrict braided monoidal 2category with duals on one unframed selfdual object’. By this universal property, any unframed selfdual object in a braided monoidal 2category with duals determines an invariant of 2tangles in 4 dimensions. 1
From subfactors to categories and topology III. Triangulation invariants of 3manifolds and Morita equivalence of tensor categories
 In preparation
"... ..."
Generalized Centers of Braided and Sylleptic Monoidal 2Categories
, 1997
"... Recent developments in higherdimensional algebra due to Kapranov and Voevodsky, Day and Street, and Baez and Neuchl include definitions of braided, sylleptic and symmetric monoidal 2categories, and a center construction for monoidal 2categories which gives a braided monoidal 2category. I give ge ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
Recent developments in higherdimensional algebra due to Kapranov and Voevodsky, Day and Street, and Baez and Neuchl include definitions of braided, sylleptic and symmetric monoidal 2categories, and a center construction for monoidal 2categories which gives a braided monoidal 2category. I give generalized center constructions for braided and sylleptic monoidal 2categories which give sylleptic and symmetric monoidal 2categories respectively, and I correct some errors in the original center construction for monoidal 2categories. 1 Introduction The initial motivation for the study of braided monoidal categories was twofold: from homotopy theory, where braided monoidal categories of a particular kind arise as algebraic 3types of arcconnected, simply connected spaces, and from higherdimensional category theory, where braided monoidal categories arise as one object monoidal bicategories [16]. These motivations have subsequently been brought together by the definition of tricategori...
An introduction to ncategories. In
 In 7th Conference on Category Theory and Computer Science, SpringerVerlag
, 1997
"... ..."
Structures and Diagrammatics of Four Dimensional Topological Lattice Field Theories
 Advances in Math. 146
, 1998
"... Crane and Frenkel proposed a state sum invariant for triangulated 4manifolds. They defined and used new algebraic structures called Hopf categories for their construction. Crane and Yetter studied Hopf categories and gave some examples using group cocycles that are associated to the Drinfeld double ..."
Abstract

Cited by 20 (5 self)
 Add to MetaCart
Crane and Frenkel proposed a state sum invariant for triangulated 4manifolds. They defined and used new algebraic structures called Hopf categories for their construction. Crane and Yetter studied Hopf categories and gave some examples using group cocycles that are associated to the Drinfeld double of a finite group. In this paper we define a state sum invariant of triangulated 4manifolds using CraneYetter cocycles as Boltzmann weights. Our invariant generalizes the 3dimensional invariants defined by Dijkgraaf and Witten and the invariants that are defined via Hopf algebras. We present diagrammatic methods for the study of such invariants that illustrate connections between Hopf categories and moves to triangulations. 1 Contents 1 Introduction 3 2 Quantum 2 and 3 manifold invariants 4 Topological lattice field theories in dimension 2 . . . . . . . . . . . . . . . . . . . 4 Pachner moves in dimension 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 TuraevViro inv...
Finite groups, spherical 2categories, and 4manifold invariants. arXiv:math.QA/9903003
"... In this paper we define a class of statesum invariants of compact closed oriented piecewise linear 4manifolds using finite groups. The definition of these statesums follows from the general abstract construction of 4manifold invariants using spherical 2categories, as we defined in [32], althou ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
In this paper we define a class of statesum invariants of compact closed oriented piecewise linear 4manifolds using finite groups. The definition of these statesums follows from the general abstract construction of 4manifold invariants using spherical 2categories, as we defined in [32], although it requires a slight generalization of that construction. We show that the statesum invariants of Birmingham and Rakowski [11, 12, 13], who studied DijkgraafWitten type invariants in dimension 4, are special examples of the general construction that we present in this paper. They showed that their invariants are nontrivial by some explicit computations, so our construction includes interesting examples already. Finally, we indicate how our construction is related to homotopy 3types. This connection suggests that there are many more interesting examples of our construction to be found in the work on homotopy 3types, such as [15], for example. 1 1