Results 1  10
of
49
Domains for Computation in Mathematics, Physics and Exact Real Arithmetic
 Bulletin of Symbolic Logic
, 1997
"... We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability dist ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and uniqueness of attractors and invariant distributions have been obtained, measure and integration theory, where a generalization of the Riemann theory of integration has been developed, and real arithmetic, where a feasible setting for exact computer arithmetic has been formulated. We give a number of algorithms for computation in the theory of iterated function systems with applications in statistical physics and in period doubling route to chao...
A DomainTheoretic Approach to Computability on the Real Line
, 1997
"... In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and ..."
Abstract

Cited by 43 (8 self)
 Add to MetaCart
In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and a framework and an implementation of a package for exact real number arithmetic. Based on recursion theory we present here a precise and direct formulation of effective representation of real numbers by continuous domains, which is equivalent to the representation of real numbers by algebraic domains as in the work of StoltenbergHansen and Tucker. We use basic ingredients of an effective theory of continuous domains to spell out notions of computability for the reals and for functions on the real line. We prove directly that our approach is equivalent to the established Turingmachine based approach which dates back to Grzegorczyk and Lacombe, is used by PourEl & Richards in their found...
Computing over the reals: Foundations for scientific computing
 Notices of the AMS
"... We give a detailed treatment of the “bitmodel ” of computability and complexity of real functions and subsets of R n, and argue that this is a good way to formalize many problems of scientific computation. In Section 1 we also discuss the alternative BlumShubSmale model. In the final section we d ..."
Abstract

Cited by 32 (3 self)
 Add to MetaCart
We give a detailed treatment of the “bitmodel ” of computability and complexity of real functions and subsets of R n, and argue that this is a good way to formalize many problems of scientific computation. In Section 1 we also discuss the alternative BlumShubSmale model. In the final section we discuss the issue of whether physical systems could defeat the ChurchTuring Thesis. 1
An analog characterization of the Grzegorczyk hierarchy
 Journal of Complexity
, 2002
"... We study a restricted version of Shannon's General . . . ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
We study a restricted version of Shannon's General . . .
Abstract versus concrete computation on metric partial algebras
 ACM Transactions on Computational Logic
, 2004
"... Data types containing infinite data, such as the real numbers, functions, bit streams and waveforms, are modelled by topological manysorted algebras. In the theory of computation on topological algebras there is a considerable gap between socalled abstract and concrete models of computation. We pr ..."
Abstract

Cited by 28 (17 self)
 Add to MetaCart
Data types containing infinite data, such as the real numbers, functions, bit streams and waveforms, are modelled by topological manysorted algebras. In the theory of computation on topological algebras there is a considerable gap between socalled abstract and concrete models of computation. We prove theorems that bridge the gap in the case of metric algebras with partial operations. With an abstract model of computation on an algebra, the computations are invariant under isomorphisms and do not depend on any representation of the algebra. Examples of such models are the ‘while ’ programming language and the BCSS model. With a concrete model of computation, the computations depend on the choice of a representation of the algebra and are not invariant under isomorphisms. Usually, the representations are made from the set N of natural numbers, and computability is reduced to classical computability on N. Examples of such models are computability via effective metric spaces, effective domain representations, and type two enumerability. The theory of abstract models is stable: there are many models of computation, and
Noncomputable Julia sets
 Journ. Amer. Math. Soc
"... Polynomial Julia sets have emerged as the most studied examples of fractal sets generated by a dynamical system. Apart from the beautiful mathematics, one of the reasons for their popularity is the beauty of the computergenerated images of such sets. The algorithms used to draw these pictures vary; ..."
Abstract

Cited by 26 (6 self)
 Add to MetaCart
Polynomial Julia sets have emerged as the most studied examples of fractal sets generated by a dynamical system. Apart from the beautiful mathematics, one of the reasons for their popularity is the beauty of the computergenerated images of such sets. The algorithms used to draw these pictures vary; the most naïve work by iterating the center of a pixel to determine if it lies in the Julia set. Milnor’s distanceestimator algorithm [Mil] uses classical complex analysis to give a onepixel estimate of the Julia set. This algorithm and its modifications work quite well for many examples, but it is well known that in some particular cases computation time will grow very rapidly with increase of the resolution. Moreover, there are examples, even in the family of quadratic polynomials, when no satisfactory pictures of the Julia set exist. In this paper we study computability properties of Julia sets of quadratic polynomials. Under the definition we use, a set is computable, if, roughly speaking, its image can be generated by a computer with an arbitrary precision. Under this notion of computability we show: Main Theorem. There exists a parameter value c ∈ C such that the Julia set of
Polynomial differential equations compute all real computable functions on computable compact intervals
, 2007
"... ..."
Randomness Space
 Automata, Languages and Programming, Proceedings of the 25th International Colloquium, ICALP’98
, 1998
"... MartinL#of de#ned in#nite random sequences over a #nite alphabet via randomness tests which describe sets having measure zero in a constructive sense. In this paper this concept is generalized to separable topological spaces with a measure, following a suggestion of Zvonkin and Levin. After stud ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
MartinL#of de#ned in#nite random sequences over a #nite alphabet via randomness tests which describe sets having measure zero in a constructive sense. In this paper this concept is generalized to separable topological spaces with a measure, following a suggestion of Zvonkin and Levin. After studying basic results and constructions for such randomness spaces a general invariance result is proved which gives conditions under which a function between randomness spaces preserves randomness. This corrects and extends a result bySchnorr. Calude and J#urgensen proved that the randomness notion for real numbers obtained by considering their bary representations is independent from the base b. We use our invariance result to show that this notion is identical with the notion which one obtains by viewing the real number space directly as a randomness space. Furthermore, arithmetic properties of random real numbers are derived, for example that every computable analytic function pres...
Recursive analysis characterized as a class of real recursive functions
 Fundamenta Informaticae
, 2006
"... Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real r ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real recursive functions that corresponds to extensions of computable functions over the integers. Mixing the two approaches we prove that computable functions over the real numbers in the sense of recursive analysis can be characterized as the smallest class of functions that contains some basic functions, and closed by composition, linear integration, minimalization and limit schema.
Computable Banach Spaces via Domain Theory
 Theoretical Computer Science
, 1998
"... This paper extends the ordertheoretic approach to computable analysis via continuous domains to complete metric spaces and Banach spaces. We employ the domain of formal balls to define a computability theory for complete metric spaces. For Banach spaces, the domain specialises to the domain of clos ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
This paper extends the ordertheoretic approach to computable analysis via continuous domains to complete metric spaces and Banach spaces. We employ the domain of formal balls to define a computability theory for complete metric spaces. For Banach spaces, the domain specialises to the domain of closed balls, ordered by reversed inclusion. We characterise computable linear operators as those which map computable sequences to computable sequences and are effectively bounded. We show that the domaintheoretic computability theory is equivalent to the wellestablished approach by PourEl and Richards. 1 Introduction This paper is part of a programme to introduce the theory of continuous domains as a new approach to computable analysis. Initiated by the various applications of continuous domain theory to modelling classical mathematical spaces and performing computations as outlined in the recent survey paper by Edalat [6], the authors started this work with [9] which was concerned with co...