Results 1 
8 of
8
On some exponential functionals of Brownian motion
 Adv. Appl. Prob
, 1992
"... Abstract: This is the second part of our survey on exponential functionals of Brownian motion. We focus on the applications of the results about the distributions of the exponential functionals, which have been discussed in the first part. Pricing formula for call options for the Asian options, expl ..."
Abstract

Cited by 98 (9 self)
 Add to MetaCart
Abstract: This is the second part of our survey on exponential functionals of Brownian motion. We focus on the applications of the results about the distributions of the exponential functionals, which have been discussed in the first part. Pricing formula for call options for the Asian options, explicit expressions for the heat kernels on hyperbolic spaces, diffusion processes in random environments and extensions of Lévy’s and Pitman’s theorems are discussed.
On The Distribution And Asymptotic Results For Exponential Functionals Of Lévy Processes
, 1997
"... . The aim of this note is to study the distribution and the asymptotic behavior of the exponential functional A t := R t 0 e s ds, where ( s ; s 0) denotes a L'evy process. When A1 ! 1, we show that in most cases, the law of A1 is a solution of an integrodifferential equation ; moreover, this ..."
Abstract

Cited by 65 (8 self)
 Add to MetaCart
. The aim of this note is to study the distribution and the asymptotic behavior of the exponential functional A t := R t 0 e s ds, where ( s ; s 0) denotes a L'evy process. When A1 ! 1, we show that in most cases, the law of A1 is a solution of an integrodifferential equation ; moreover, this law is characterized by its integral moments. When the process is asymptotically ffstable, we prove that t \Gamma1=ff log A t converges in law, as t !1, to the supremum of an ffstable L'evy process ; in particular, if E [ 1 ] ? 0, then ff = 1 and (1=t) log A t converges almost surely to E [ 1 ]. Eventually, we use Girsanov's transform to give the explicit behavior of E \Theta (a +A t ()) \Gamma1 as t ! 1, where a is a constant, and deduce from this the rate of decay of the tail of the distribution of the maximum of a diffusion process in a random L'evy environment. 1. Introduction We first describe three different sources of interest for exponential functionals of Brownian mot...
Exponential functionals of Lévy processes
 Probabilty Surveys
, 2005
"... Abstract: This text surveys properties and applications of the exponential functional ∫ t exp(−ξs)ds of realvalued Lévy processes ξ = (ξt, t ≥ 0). 0 ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
Abstract: This text surveys properties and applications of the exponential functional ∫ t exp(−ξs)ds of realvalued Lévy processes ξ = (ξt, t ≥ 0). 0
Pricing equity derivatives subject to bankruptcy
 Mathematical Finance
, 2006
"... We solve in closed form a parsimonious extension of the Black–Scholes–Merton model with bankruptcy where the hazard rate of bankruptcy is a negative power of the stock price. Combining a scale change and a measure change, the model dynamics is reduced to a linear stochastic differential equation who ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
We solve in closed form a parsimonious extension of the Black–Scholes–Merton model with bankruptcy where the hazard rate of bankruptcy is a negative power of the stock price. Combining a scale change and a measure change, the model dynamics is reduced to a linear stochastic differential equation whose solution is a diffusion process that plays a central role in the pricing of Asian options. The solution is in the form of a spectral expansion associated with the diffusion infinitesimal generator. The latter is closely related to the Schrödinger operator with Morse potential. Pricing formulas for both corporate bonds and stock options are obtained in closed form. Term credit spreads on corporate bonds and implied volatility skews of stock options are closely linked in this model, with parameters of the hazard rate specification controlling both the shape of the term structure of credit spreads and the slope of the implied volatility skew. Our analytical formulas are easy to implement and should prove useful to researchers and practitioners in corporate debt and equity derivatives markets.
Infinitely Divisible Laws Associated With Hyperbolic Functions
, 2000
"... The infinitely divisible distributions on R + of random variables C t , S t and T t with Laplace transforms ` 1 cosh p 2 ' t ; / p 2 sinh p 2 ! t ; and / tanh p 2 p 2 ! t respectively are characterized for various t ? 0 in a number of different ways: by simple relations bet ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
The infinitely divisible distributions on R + of random variables C t , S t and T t with Laplace transforms ` 1 cosh p 2 ' t ; / p 2 sinh p 2 ! t ; and / tanh p 2 p 2 ! t respectively are characterized for various t ? 0 in a number of different ways: by simple relations between their moments and cumulants, by corresponding relations between the distributions and their L'evy measures, by recursions for their Mellin transforms, and by differential equations satisfied by their Laplace transforms. Some of these results are interpreted probabilistically via known appearances of these distributions for t = 1 or 2 in the description of the laws of various functionals of Brownian motion and Bessel processes, such as the heights and lengths of excursions of a onedimensional Brownian motion. The distributions of C¹ and S³ are also known to appear in the Mellin representations of two important functions in analytic number theory, the Riemann zeta function and ...
On the integral of geometric Brownian motion
 Adv. Appl. Prob
, 2003
"... Abstract. This paper studies the law of any power of the integral of geometric Brownian motion over any finite time interval. As its main results, two integral representations for this law are derived. This is by enhancing the Laplace transform ansatz of [Y] with complex analytic methods, which is t ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Abstract. This paper studies the law of any power of the integral of geometric Brownian motion over any finite time interval. As its main results, two integral representations for this law are derived. This is by enhancing the Laplace transform ansatz of [Y] with complex analytic methods, which is the main methodological contribution of the paper. The one of our integrals has a similar structure to that obtained in [Y], while the other is in terms of Hermite functions as those of [Du01]. Performing or not performing a certain Girsanov transformation is identified as the source of these two forms of the laws. For exponents equal to 1 our results specialize to those obtained in [Y], but for exponents equal to minus 1 they give representations for the laws which are markedly different from those obtained in [Du01].
Limiting laws for long Brownian bridges perturbed by their onesided maximum
 III, in "Period. Math. Hungar
"... In homage to Professors E. Csaki and P. Revesz. Abstract. Results of penalization of a onedimensional Brownian motion (Xt), by its onesided maximum (St = Xu), which were recently obtained by the authors are improved with the sup 0≤u≤t considerationin the present paper of the asymptotic behaviour ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
In homage to Professors E. Csaki and P. Revesz. Abstract. Results of penalization of a onedimensional Brownian motion (Xt), by its onesided maximum (St = Xu), which were recently obtained by the authors are improved with the sup 0≤u≤t considerationin the present paper of the asymptotic behaviour of the likewise penalized Brownian bridges of length t, as t → ∞, or penalizations by functions of (St, Xt), and also the study of the speed of convergence, as t → ∞, of the penalized distributions at time t.
Samplesize
, 2008
"... dependence of the groundstate energy in a onedimensional localization problem. ..."
Abstract
 Add to MetaCart
dependence of the groundstate energy in a onedimensional localization problem.