Results 1 
5 of
5
Inductive Sets and Families in MartinLöf's Type Theory and Their SetTheoretic Semantics
 Logical Frameworks
, 1991
"... MartinLof's type theory is presented in several steps. The kernel is a dependently typed calculus. Then there are schemata for inductive sets and families of sets and for primitive recursive functions and families of functions. Finally, there are set formers (generic polymorphism) and universes. ..."
Abstract

Cited by 76 (13 self)
 Add to MetaCart
MartinLof's type theory is presented in several steps. The kernel is a dependently typed calculus. Then there are schemata for inductive sets and families of sets and for primitive recursive functions and families of functions. Finally, there are set formers (generic polymorphism) and universes. At each step syntax, inference rules, and settheoretic semantics are given. 1 Introduction Usually MartinLof's type theory is presented as a closed system with rules for a finite collection of set formers. But it is also often pointed out that the system is in principle open to extension: we may introduce new sets when there is a need for them. The principle is that a set is by definition inductively generated  it is defined by its introduction rules, which are rules for generating its elements. The elimination rule is determined by the introduction rules and expresses definition by primitive recursion on the way the elements of the set are generated. (In this paper I shall use the term ...
Inductive Families
 Formal Aspects of Computing
, 1997
"... A general formulation of inductive and recursive definitions in MartinLof's type theory is presented. It extends Backhouse's `DoItYourself Type Theory' to include inductive definitions of families of sets and definitions of functions by recursion on the way elements of such sets are generated. Th ..."
Abstract

Cited by 65 (13 self)
 Add to MetaCart
A general formulation of inductive and recursive definitions in MartinLof's type theory is presented. It extends Backhouse's `DoItYourself Type Theory' to include inductive definitions of families of sets and definitions of functions by recursion on the way elements of such sets are generated. The formulation is in natural deduction and is intended to be a natural generalization to type theory of MartinLof's theory of iterated inductive definitions in predicate logic. Formal criteria are given for correct formation and introduction rules of a new set former capturing definition by strictly positive, iterated, generalized induction. Moreover, there is an inversion principle for deriving elimination and equality rules from the formation and introduction rules. Finally, there is an alternative schematic presentation of definition by recursion. The resulting theory is a flexible and powerful language for programming and constructive mathematics. We hint at the wealth of possible applic...
An Exploration of the BirdMeertens Formalism
 In STOP Summer School on Constructive Algorithmics, Abeland
, 1989
"... Two formalisms that have been used extensively in the last few years for the calculation of programs are the Eindhoven quantifier notation and the formalism developed by Bird and Meertens. Although the former has always been applied with ultimate goal the derivation of imperative programs and th ..."
Abstract

Cited by 32 (3 self)
 Add to MetaCart
Two formalisms that have been used extensively in the last few years for the calculation of programs are the Eindhoven quantifier notation and the formalism developed by Bird and Meertens. Although the former has always been applied with ultimate goal the derivation of imperative programs and the latter with ultimate goal the derivation of functional programs there is a remarkable similarity in the formal games that are played. This paper explores the BirdMeertens formalism by expressing and deriving within it the basic rules applicable in the Eindhoven quantifier notation. 1 Calculation was an endless delight to Moorish scholars. They loved problems, they enjoyed finding ingenious methods to solve them, and sometimes they turned their methods into mechanical devices. (J. Bronowski, The Ascent of Man. Book Club Associates: London (1977).) 1 Introduction Our ability to calculate  whether it be sums, products, differentials, integrals, or whatever  would be woefull...
Finite Axiomatizations of Inductive and InductiveRecursive Definitions
 Informal Proc. of Workshop on Generic Programming, WGP’98, Marstrand
, 1998
"... We first present a finite axiomatization of strictly positive inductive types in the simply typed lambda calculus. Then we show how this axiomatization can be modified to encompass simultaneous inductiverecursive definitions in intuitionistic type theory. A version of this has been implemented in t ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
We first present a finite axiomatization of strictly positive inductive types in the simply typed lambda calculus. Then we show how this axiomatization can be modified to encompass simultaneous inductiverecursive definitions in intuitionistic type theory. A version of this has been implemented in the Half system which is based on MartinLf's logical framework. 1 Introduction The present note summarizes a presentation to be given at the Workshop on Generic Programming, Marstrand, Sweden, June 18th, 1998. We use MartinLof's logical framework as a metalanguage for axiomatizing inductive definitions in the simply typed lambda calculus. We also show how to generalize this axiomatization to the case of inductiverecursive definitions in the lambda calculus with dependent types. The reader is referred to the full paper [7] for a more complete account focussing on inductionrecursion. Related papers discussing inductive definitions in intuitionistic type theory include Backhouse [1, 2], Co...
Recursive Models of General Inductive Types
 Fundam. Inf
, 1993
"... We give an interpretation of MartinLof's type theory (with universes) extended with generalized inductive types. The model is an extension of the recursive model given by Beeson. By restricting our attention to PER model, we show that the strictness of positivity condition in the definition of gene ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We give an interpretation of MartinLof's type theory (with universes) extended with generalized inductive types. The model is an extension of the recursive model given by Beeson. By restricting our attention to PER model, we show that the strictness of positivity condition in the definition of generalized inductive types can be dropped. It therefore gives an interpretation of general inductive types in MartinLof's type theory. Copyright c fl1993. All rights reserved. Reproduction of all or part of this work is permitted for educational or research purposes on condition that (1) this copyright notice is included, (2) proper attribution to the author or authors is made and (3) no commercial gain is involved. Technical Reports issued by the Department of Computer Science, Manchester University, are available by anonymous ftp from m1.cs.man.ac.uk (130.88.13.4) in the directory /pub/TR. The files are stored as PostScript, in compressed form, with the report number as filename. Alternative...