Results 1 
3 of
3
Relational Properties of Domains
 Information and Computation
, 1996
"... New tools are presented for reasoning about properties of recursively defined domains. We work within a general, categorytheoretic framework for various notions of `relation' on domains and for actions of domain constructors on relations. Freyd's analysis of recursive types in terms of a property o ..."
Abstract

Cited by 99 (5 self)
 Add to MetaCart
New tools are presented for reasoning about properties of recursively defined domains. We work within a general, categorytheoretic framework for various notions of `relation' on domains and for actions of domain constructors on relations. Freyd's analysis of recursive types in terms of a property of mixed initiality/finality is transferred to a corresponding property of invariant relations. The existence of invariant relations is proved under completeness assumptions about the notion of relation. We show how this leads to simpler proofs of the computational adequacy of denotational semantics for functional programming languages with userdeclared datatypes. We show how the initiality/finality property of invariant relations can be specialized to yield an induction principle for admissible subsets of recursively defined domains, generalizing the principle of structural induction for inductively defined sets. We also show how the initiality /finality property gives rise to the coinduct...
Structural Induction and Coinduction in a Fibrational Setting
 Information and Computation
, 1997
"... . We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for in ..."
Abstract

Cited by 67 (14 self)
 Add to MetaCart
. We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for initial algebras is admissible, and dually, in the presence of quotient types, the coinduction principle for terminal coalgebras is admissible. After giving an alternative formulation of induction in terms of binary relations, we combine both principles and obtain a mixed induction/coinduction principle which allows us to reason about minimal solutions X = oe(X) where X may occur both positively and negatively in the type constructor oe. We further strengthen these logical principles to deal with contexts and prove that such strengthening is valid when the (abstract) logic we consider is contextually/functionally complete. All the main results follow from a basic result about adjunc...
Relational Properties of Recursively Defined Domains
 In 8th Annual Symposium on Logic in Computer Science
, 1993
"... This paper describes a mixed induction/coinduction property of relations on recursively defined domains. We work within a general framework for relations on domains and for actions of type constructors on relations introduced by O'Hearn and Tennent [20], and draw upon Freyd's analysis [7] of recurs ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
This paper describes a mixed induction/coinduction property of relations on recursively defined domains. We work within a general framework for relations on domains and for actions of type constructors on relations introduced by O'Hearn and Tennent [20], and draw upon Freyd's analysis [7] of recursive types in terms of a simultaneous initiality/finality property. The utility of the mixed induction/coinduction property is demonstrated by deriving a number of families of proof principles from it. One instance of the relational framework yields a family of induction principles for admissible subsets of general recursively defined domains which extends the principle of structural induction for inductively defined sets. Another instance of the framework yields the coinduction principle studied by the author in [22], by which equalities between elements of recursively defined domains may be proved via `bisimulations'. 1 Introduction A characteristic feature of higherorder functional lan...