Results 1 
2 of
2
A CurryHoward foundation for functional computation with control
 In Proceedings of ACM SIGPLANSIGACT Symposium on Principle of Programming Languages
, 1997
"... We introduce the type theory ¯ v , a callbyvalue variant of Parigot's ¯calculus, as a CurryHoward representation theory of classical propositional proofs. The associated rewrite system is ChurchRosser and strongly normalizing, and definitional equality of the type theory is consistent, compatib ..."
Abstract

Cited by 77 (3 self)
 Add to MetaCart
We introduce the type theory ¯ v , a callbyvalue variant of Parigot's ¯calculus, as a CurryHoward representation theory of classical propositional proofs. The associated rewrite system is ChurchRosser and strongly normalizing, and definitional equality of the type theory is consistent, compatible with cut, congruent and decidable. The attendant callbyvalue programming language ¯pcf v is obtained from ¯ v by augmenting it by basic arithmetic, conditionals and fixpoints. We study the behavioural properties of ¯pcf v and show that, though simple, it is a very general language for functional computation with control: it can express all the main control constructs such as exceptions and firstclass continuations. Prooftheoretically the dual ¯ v constructs of naming and ¯abstraction witness the introduction and elimination rules of absurdity respectively. Computationally they give succinct expression to a kind of generic (forward) "jump" operator, which may be regarded as a unif...
A Parigotstyle Linear lambdaCalculus for Full Intuitionistic Linear Logic
, 2003
"... This paper describes a natural deduction formulation for Full Intuitionistic Linear Logic (FILL), an intriguing variation of multiplicative linear logic, due to Hyland and de Paiva. The system FILL resembles intuitionistic logic, in that all its connectives are independent, but resembles classic ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper describes a natural deduction formulation for Full Intuitionistic Linear Logic (FILL), an intriguing variation of multiplicative linear logic, due to Hyland and de Paiva. The system FILL resembles intuitionistic logic, in that all its connectives are independent, but resembles classical logic in that its sequentcalculus formulation has intrinsic multiple conclusions. From the intrinsic multiple conclusions comes the inspiration to modify Parigot's natural deduction systems for classical logic, to produce a natural deduction formulation and a term assignment system for FILL.