Results 1 
2 of
2
The inductive approach to verifying cryptographic protocols
 Journal of Computer Security
, 1998
"... Informal arguments that cryptographic protocols are secure can be made rigorous using inductive definitions. The approach is based on ordinary predicate calculus and copes with infinitestate systems. Proofs are generated using Isabelle/HOL. The human effort required to analyze a protocol can be as ..."
Abstract

Cited by 406 (28 self)
 Add to MetaCart
Informal arguments that cryptographic protocols are secure can be made rigorous using inductive definitions. The approach is based on ordinary predicate calculus and copes with infinitestate systems. Proofs are generated using Isabelle/HOL. The human effort required to analyze a protocol can be as little as a week or two, yielding a proof script that takes a few minutes to run. Protocols are inductively defined as sets of traces. A trace is a list of communication events, perhaps comprising many interleaved protocol runs. Protocol descriptions incorporate attacks and accidental losses. The model spy knows some private keys and can forge messages using components decrypted from previous traffic. Three protocols are analyzed below: OtwayRees (which uses sharedkey encryption), NeedhamSchroeder (which uses publickey encryption), and a recursive protocol [9] (which is of variable length). One can prove that event ev always precedes event ev ′ or that property
Proving Properties of Security Protocols by Induction
 In 10th IEEE Computer Security Foundations Workshop
, 1997
"... Informal justifications of security protocols involve arguing backwards that various events are impossible. Inductive definitions can make such arguments rigorous. The resulting proofs are complicated, but can be generated reasonably quickly using the proof tool Isabelle/HOL. There is no restriction ..."
Abstract

Cited by 150 (7 self)
 Add to MetaCart
Informal justifications of security protocols involve arguing backwards that various events are impossible. Inductive definitions can make such arguments rigorous. The resulting proofs are complicated, but can be generated reasonably quickly using the proof tool Isabelle/HOL. There is no restriction to finitestate systems and the approach is not based on belief logics. Protocols are inductively defined as sets of traces, which may involve many interleaved protocol runs. Protocol descriptions model accidental key losses as well as attacks. The model spy can send spoof messages made up of components decrypted from previous traffic. Several key distribution protocols have been studied, including NeedhamSchroeder, Yahalom and OtwayRees. The method applies to both symmetrickey and publickey protocols. A new attack has been discovered in a variant of OtwayRees (already broken by Mao and Boyd). Assertions concerning secrecy and authenticity have been proved. CONTENTS i Contents 1 Intro...