Results 1  10
of
40
Programming Parallel Algorithms
, 1996
"... In the past 20 years there has been treftlendous progress in developing and analyzing parallel algorithftls. Researchers have developed efficient parallel algorithms to solve most problems for which efficient sequential solutions are known. Although some ofthese algorithms are efficient only in a th ..."
Abstract

Cited by 191 (9 self)
 Add to MetaCart
In the past 20 years there has been treftlendous progress in developing and analyzing parallel algorithftls. Researchers have developed efficient parallel algorithms to solve most problems for which efficient sequential solutions are known. Although some ofthese algorithms are efficient only in a theoretical framework, many are quite efficient in practice or have key ideas that have been used in efficient implementations. This research on parallel algorithms has not only improved our general understanding ofparallelism but in several cases has led to improvements in sequential algorithms. Unf:ortunately there has been less success in developing good languages f:or prograftlftling parallel algorithftls, particularly languages that are well suited for teaching and prototyping algorithms. There has been a large gap between languages
A Comparison of Sorting Algorithms for the Connection Machine CM2
"... We have implemented three parallel sorting algorithms on the Connection Machine Supercomputer model CM2: Batcher's bitonic sort, a parallel radix sort, and a sample sort similar to Reif and Valiant's flashsort. We have also evaluated the implementation of many other sorting algorithms proposed in t ..."
Abstract

Cited by 173 (6 self)
 Add to MetaCart
We have implemented three parallel sorting algorithms on the Connection Machine Supercomputer model CM2: Batcher's bitonic sort, a parallel radix sort, and a sample sort similar to Reif and Valiant's flashsort. We have also evaluated the implementation of many other sorting algorithms proposed in the literature. Our computational experiments show that the sample sort algorithm, which is a theoretically efficient "randomized" algorithm, is the fastest of the three algorithms on large data sets. On a 64Kprocessor CM2, our sample sort implementation can sort 32 10 6 64bit keys in 5.1 seconds, which is over 10 times faster than the CM2 library sort. Our implementation of radix sort, although not as fast on large data sets, is deterministic, much simpler to code, stable, faster with small keys, and faster on small data sets (few elements per processor). Our implementation of bitonic sort, which is pipelined to use all the hypercube wires simultaneously, is the least efficient of the three on large data sets, but is the most efficient on small data sets, and is considerably more space efficient. This paper analyzes the three algorithms in detail and discusses many practical issues that led us to the particular implementations.
Direct BulkSynchronous Parallel Algorithms
 JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
, 1992
"... We describe a methodology for constructing parallel algorithms that are transportable among parallel computers having different numbers of processors, different bandwidths of interprocessor communication and different periodicity of global synchronisation. We do this for the bulksynchronous paralle ..."
Abstract

Cited by 164 (27 self)
 Add to MetaCart
We describe a methodology for constructing parallel algorithms that are transportable among parallel computers having different numbers of processors, different bandwidths of interprocessor communication and different periodicity of global synchronisation. We do this for the bulksynchronous parallel (BSP) model, which abstracts the characteristics of a parallel machine into three numerical parameters p, g, and L, corresponding to processors, bandwidth, and periodicity respectively. The model differentiates memory that is local to a processor from that which is not, but, for the sake of universality, does not differentiate network proximity. The advantages of this model in supporting shared memory or PRAM style programming have been treated elsewhere. Here we emphasise the viability of an alternative direct style of programming where, for the sake of efficiency the programmer retains control of memory allocation. We show that optimality to within a multiplicative factor close to one ca...
BSPlib: The BSP Programming Library
, 1998
"... BSPlib is a small communications library for bulk synchronous parallel (BSP) programming which consists of only 20 basic operations. This paper presents the full definition of BSPlib in C, motivates the design of its basic operations, and gives examples of their use. The library enables programming ..."
Abstract

Cited by 82 (6 self)
 Add to MetaCart
BSPlib is a small communications library for bulk synchronous parallel (BSP) programming which consists of only 20 basic operations. This paper presents the full definition of BSPlib in C, motivates the design of its basic operations, and gives examples of their use. The library enables programming in two distinct styles: direct remote memory access using put or get operations, and bulk synchronous message passing. Currently, implementations of BSPlib exist for a variety of modern architectures, including massively parallel computers with distributed memory, shared memory multiprocessors, and networks of workstations. BSPlib has been used in several scientific and industrial applications; this paper briefly describes applications in benchmarking, Fast Fourier Transforms, sorting, and molecular dynamics.
Parallel sorting on a sharednothing architecture using probabilistic splitting
, 1991
"... We consider the problem of external sorting in a sharednothing multiprocessor. A critical step in the algorithms we consider is to determine the range of sort keys to be handled by each processor. We consider two techniques for determining these ranges of sort keys: exact splitting, using a paralle ..."
Abstract

Cited by 80 (1 self)
 Add to MetaCart
We consider the problem of external sorting in a sharednothing multiprocessor. A critical step in the algorithms we consider is to determine the range of sort keys to be handled by each processor. We consider two techniques for determining these ranges of sort keys: exact splitting, using a parallel version of the algorithm proposed by Iyer, Ricard, and Varman; and probabilistic splitting, which uses sampling to estimate quantiles. We present analytic results showing that probabilistic splitting performs better than exact splitting. Finally, we present experimental results from an implementation of sorting via probabilistic splitting in the Gamma parallel database machine.
CommunicationEfficient Parallel Sorting
, 1996
"... We study the problem of sorting n numbers on a pprocessor bulksynchronous parallel (BSP) computer, which is a parallel multicomputer that allows for general processortoprocessor communication rounds provided each processor sends and receives at most h items in any round. We provide parallel sort ..."
Abstract

Cited by 64 (2 self)
 Add to MetaCart
We study the problem of sorting n numbers on a pprocessor bulksynchronous parallel (BSP) computer, which is a parallel multicomputer that allows for general processortoprocessor communication rounds provided each processor sends and receives at most h items in any round. We provide parallel sorting methods that use internal computation time that is O( n log n p ) and a number of communication rounds that is O( log n log(h+1) ) for h = \Theta(n=p). The internal computation bound is optimal for any comparisonbased sorting algorithm. Moreover, the number of communication rounds is bounded by a constant for the (practical) situations when p n 1\Gamma1=c for a constant c 1. In fact, we show that our bound on the number of communication rounds is asymptotically optimal for the full range of values for p, for we show that just computing the "or" of n bits distributed evenly to the first O(n=h) of an arbitrary number of processors in a BSP computer requires\Omega\Gammaqui n= log(h...
Designing Efficient Sorting Algorithms for Manycore GPUs
, 2009
"... We describe the design of highperformance parallel radix sort and merge sort routines for manycore GPUs, taking advantage of the full programmability offered by CUDA. Our radix sort is the fastest GPU sort and our merge sort is the fastest comparisonbased sort reported in the literature. Our radix ..."
Abstract

Cited by 55 (4 self)
 Add to MetaCart
We describe the design of highperformance parallel radix sort and merge sort routines for manycore GPUs, taking advantage of the full programmability offered by CUDA. Our radix sort is the fastest GPU sort and our merge sort is the fastest comparisonbased sort reported in the literature. Our radix sort is up to 4 times faster than the graphicsbased GPUSort and greater than 2 times faster than other CUDAbased radix sorts. It is also 23 % faster, on average, than even a very carefully optimized multicore CPU sorting routine. To achieve this performance, we carefully design our algorithms to expose substantial finegrained parallelism and decompose the computation into independent tasks that perform minimal global communication. We exploit the highspeed onchip shared memory provided by NVIDIA’s GPU architecture and efficient dataparallel primitives, particularly parallel scan. While targeted at GPUs, these algorithms should also be wellsuited for other manycore processors.
Deterministic Sorting and Randomized Median Finding on the BSP model
, 1996
"... We present new BSP algorithms for deterministic sorting and randomized median finding. We sort n general keys by using a partitioning scheme that achieves the requirements of efficiency (oneoptimality) and insensitivity against data skew (the accuracy of the splitting keys depends solely on the ste ..."
Abstract

Cited by 48 (23 self)
 Add to MetaCart
We present new BSP algorithms for deterministic sorting and randomized median finding. We sort n general keys by using a partitioning scheme that achieves the requirements of efficiency (oneoptimality) and insensitivity against data skew (the accuracy of the splitting keys depends solely on the step distance, which can be adapted to meet the worstcase requirements of our application). Although we employ sampling in order to realize efficiency, we can give a precise worstcase estimation of the maximum imbalance which might occur. We also investigate optimal randomized BSP algorithms for the problem of finding the median of n elements that require, with highprobability, 3n=(2p) + o(n=p) number of comparisons, for a wide range of values of n and p. Experimental results for the two algorithms are also presented.
Implementations of Randomized Sorting on Large Parallel Machines
"... Flashsort [RV83,86] and Samplesort [HC83] are related parallel sorting algorithms proposed in the literature. Both utilize a sophisticated randomized sampling technique to form a splitter set, but Samplesort distributes the splitter set to each processor while Flashsort uses splitterdirected routin ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
Flashsort [RV83,86] and Samplesort [HC83] are related parallel sorting algorithms proposed in the literature. Both utilize a sophisticated randomized sampling technique to form a splitter set, but Samplesort distributes the splitter set to each processor while Flashsort uses splitterdirected routing. In this