Results 1 
3 of
3
COMPLEXITY OF EQUATIONS VALID IN ALGEBRAS OF RELATIONS  Part II: Finite axiomatizations.
"... We study algebras whose elements are relations, and the operations are natural "manipulations" of relations. This area goes back to 140 years ago to works of De Morgan, Peirce, Schroder (who expanded the Boolean tradition with extra operators to handle algebras of binary relations). Well ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
We study algebras whose elements are relations, and the operations are natural "manipulations" of relations. This area goes back to 140 years ago to works of De Morgan, Peirce, Schroder (who expanded the Boolean tradition with extra operators to handle algebras of binary relations). Well known examples of algebras of relations are the varieties RCAn of cylindric algebras of nary relations, RPEAn of polyadic equality algebras of nary relations, and RRA of binary relations with composition. We prove that any axiomatization, say E, of RCAn has to be very complex in the following sense: for every natural number k there is an equation in E containing more than k distinct variables and all the operation symbols, if 2 ! n ! !. Completely analogous statement holds for the case n !. This improves Monk's famous nonfinitizability theorem for which we give here a simple proof. We prove analogous nonfinitizability properties of the larger varieties SNrnCA n+k . We prove that the complementa...
Algebraic logic, varieties of algebras, and algebraic varieties
, 1995
"... Abstract. The aim of the paper is discussion of connections between the three kinds of objects named in the title. In a sense, it is a survey of such connections; however, some new directions are also considered. This relates, especially, to sections 3, 4 and 5, where we consider a field that could ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
Abstract. The aim of the paper is discussion of connections between the three kinds of objects named in the title. In a sense, it is a survey of such connections; however, some new directions are also considered. This relates, especially, to sections 3, 4 and 5, where we consider a field that could be understood as an universal algebraic geometry. This geometry is parallel to universal algebra. In the monograph [51] algebraic logic was used for building up a model of a database. Later on, the structures arising there turned out to be useful for solving several problems from algebra. This is the position which the present paper is written from.