Results 1 
7 of
7
Step by Step  Building Representations in Algebraic Logic
 Journal of Symbolic Logic
, 1995
"... We consider the problem of finding and classifying representations in algebraic logic. This is approached by letting two players build a representation using a game. Homogeneous and universal representations are characterised according to the outcome of certain games. The Lyndon conditions defini ..."
Abstract

Cited by 29 (16 self)
 Add to MetaCart
We consider the problem of finding and classifying representations in algebraic logic. This is approached by letting two players build a representation using a game. Homogeneous and universal representations are characterised according to the outcome of certain games. The Lyndon conditions defining representable relation algebras (for the finite case) and a similar schema for cylindric algebras are derived. Countable relation algebras with homogeneous representations are characterised by first order formulas. Equivalence games are defined, and are used to establish whether an algebra is !categorical. We have a simple proof that the perfect extension of a representable relation algebra is completely representable. An important open problem from algebraic logic is addressed by devising another twoplayer game, and using it to derive equational axiomatisations for the classes of all representable relation algebras and representable cylindric algebras. Other instances of this ap...
COMPLEXITY OF EQUATIONS VALID IN ALGEBRAS OF RELATIONS  Part II: Finite axiomatizations.
"... We study algebras whose elements are relations, and the operations are natural "manipulations" of relations. This area goes back to 140 years ago to works of De Morgan, Peirce, Schroder (who expanded the Boolean tradition with extra operators to handle algebras of binary relations). Well ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
We study algebras whose elements are relations, and the operations are natural "manipulations" of relations. This area goes back to 140 years ago to works of De Morgan, Peirce, Schroder (who expanded the Boolean tradition with extra operators to handle algebras of binary relations). Well known examples of algebras of relations are the varieties RCAn of cylindric algebras of nary relations, RPEAn of polyadic equality algebras of nary relations, and RRA of binary relations with composition. We prove that any axiomatization, say E, of RCAn has to be very complex in the following sense: for every natural number k there is an equation in E containing more than k distinct variables and all the operation symbols, if 2 ! n ! !. Completely analogous statement holds for the case n !. This improves Monk's famous nonfinitizability theorem for which we give here a simple proof. We prove analogous nonfinitizability properties of the larger varieties SNrnCA n+k . We prove that the complementa...
ON CANONICITY AND COMPLETIONS OF WEAKLY REPRESENTABLE RELATION ALGEBRAS
"... We show that the variety of weakly representable relation algebras is not canonical, nor closed under Monk completions. ..."
Abstract
 Add to MetaCart
(Show Context)
We show that the variety of weakly representable relation algebras is not canonical, nor closed under Monk completions.
CONTENTS Part I. Algebras of relations
"... We dedicate this work to J. Donald Monk who taught us algebraic logic and ..."
Abstract
 Add to MetaCart
(Show Context)
We dedicate this work to J. Donald Monk who taught us algebraic logic and
WEAK REPRESENTATIONS OF RELATION ALGEBRAS AND RELATIONAL BASES
"... It is known that for all finite ..."
(Show Context)