Results 1 
4 of
4
A Survey of Adaptive Sorting Algorithms
, 1992
"... Introduction and Survey; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems  Sorting and Searching; E.5 [Data]: Files  Sorting/searching; G.3 [Mathematics of Computing]: Probability and Statistics  Probabilistic algorithms; E.2 [Data Storage Represe ..."
Abstract

Cited by 65 (3 self)
 Add to MetaCart
Introduction and Survey; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems  Sorting and Searching; E.5 [Data]: Files  Sorting/searching; G.3 [Mathematics of Computing]: Probability and Statistics  Probabilistic algorithms; E.2 [Data Storage Representation]: Composite structures, linked representations. General Terms: Algorithms, Theory. Additional Key Words and Phrases: Adaptive sorting algorithms, Comparison trees, Measures of disorder, Nearly sorted sequences, Randomized algorithms. A Survey of Adaptive Sorting Algorithms 2 CONTENTS INTRODUCTION I.1 Optimal adaptivity I.2 Measures of disorder I.3 Organization of the paper 1.WORSTCASE ADAPTIVE (INTERNAL) SORTING ALGORITHMS 1.1 Generic Sort 1.2 CookKim division 1.3 Partition Sort 1.4 Exponential Search 1.5 Adaptive Merging 2.EXPECTEDCASE ADAPTIV
Compressed representations of permutations, and applications
 SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE
"... We explore various techniques to compress a permutation π over n integers, taking advantage of ordered subsequences in π, while supporting its application π(i) and the application of its inverse π −1 (i) in small time. Our compression schemes yield several interesting byproducts, in many cases mat ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
We explore various techniques to compress a permutation π over n integers, taking advantage of ordered subsequences in π, while supporting its application π(i) and the application of its inverse π −1 (i) in small time. Our compression schemes yield several interesting byproducts, in many cases matching, improving or extending the best existing results on applications such as the encoding of a permutation in order to support iterated applications π k (i) of it, of integer functions, and of inverted lists and suffix arrays.
Sorting and/by Merging Finger Trees
 In Algorithms and Computation: Third International Symposium, ISAAC ’92
, 1992
"... : We describe a sorting algorithm that is optimally adaptive with respect to several important measures of presortedness. In particular, the algorithm requires O(n+k log k) time on nsequences X that have a longest ascending subsequence of length n \Gamma k and for which Rem(X) = k; O(n log(k=n)) ti ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
: We describe a sorting algorithm that is optimally adaptive with respect to several important measures of presortedness. In particular, the algorithm requires O(n+k log k) time on nsequences X that have a longest ascending subsequence of length n \Gamma k and for which Rem(X) = k; O(n log(k=n)) time on sequences with k inversions; and O(n log k) time on sequences that can be decomposed into k monotone shuffles. The algorithm makes use of an adaptive merging operation that can be implemented using finger search trees. 1 Introduction An adaptive algorithm is one which requires fewer resources to solve `easy' problem instances than it does to solve `hard'. For sorting an adaptive algorithm should run in O(n) time if presented with a sorted nsequence, and in O(n log n) time for all n sequences, with the time for any particular sequence depending upon the `nearness' of the sequence to being sorted. Mannila [7] established the notion of a measure of presortedness to quantify the disord...
An Adaptive Generic Sorting Algorithm that Uses Variable Partitioning
 In preparation
, 1992
"... A sorting algorithm is adaptive if its run time for inputs of the same size n varies smoothly from O(n) to O(n log n) as the disorder of the input varies. It is well accepted that files that are already sorted are often sorted again and that many files occur naturally in nearly sorted state. Recentl ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
A sorting algorithm is adaptive if its run time for inputs of the same size n varies smoothly from O(n) to O(n log n) as the disorder of the input varies. It is well accepted that files that are already sorted are often sorted again and that many files occur naturally in nearly sorted state. Recently, researchers have focused their attention on sorting algorithms that are optimally adaptive with respect to several measures of disorder, (since the type of disorder in the input is unknown), and illustrating a need to develop tools for constructing adaptive algorithms for large classes of measures. We present a generic sorting algorithm that uses divideandconquer in which the number of subproblems depends on the disorder of the input and for which we can establish adaptivity with respect to an abstract measure. We present applications of this generic algorithm obtaining optimal adaptivity for several specific measures of disorder. Moreover, we define a randomized version of our generic ...