Results 11  20
of
146
Equational Inference, Canonical Proofs, And Proof Orderings
 Journal of the ACM
, 1992
"... We describe the application of proof orderingsa technique for reasoning about inference systemsto various rewritebased theoremproving methods, including re#nements of the standard KnuthBendix completion procedure based on critical pair criteria; Huet's procedure for rewriting modulo a ..."
Abstract

Cited by 30 (10 self)
 Add to MetaCart
(Show Context)
We describe the application of proof orderingsa technique for reasoning about inference systemsto various rewritebased theoremproving methods, including re#nements of the standard KnuthBendix completion procedure based on critical pair criteria; Huet's procedure for rewriting modulo a congruence; ordered completion #a refutationally complete extension of standard completion#; and a proof by consistency procedure for proving inductive theorems. # This is a substantially revised version of the paper, #Orderings for equational proofs," coauthored with J. Hsiang and presented at the Symp. on Logic in Computer Science #Boston, Massachusetts, June 1986#. It includes material from the paper #Proof by consistency in equational theories," by the #rst author, presented at the ThirdAnnual Symp. on Logic in Computer Science #Edinburgh, Scotland, July 1988#. This researchwas supported in part by the National Science Foundation under grants CCR8901322, CCR9007195, and CCR9024271. 1 ...
Birewrite systems
, 1996
"... In this article we propose an extension of term rewriting techniques to automate the deduction in monotone preorder theories. To prove an inclusion a ⊆ b from a given set I of them, we generate from I, using a completion procedure, a birewrite system 〈R⊆, R⊇〉, that is, a pair of rewrite relations ..."
Abstract

Cited by 30 (8 self)
 Add to MetaCart
In this article we propose an extension of term rewriting techniques to automate the deduction in monotone preorder theories. To prove an inclusion a ⊆ b from a given set I of them, we generate from I, using a completion procedure, a birewrite system 〈R⊆, R⊇〉, that is, a pair of rewrite relations −−− → R ⊆ and −−− → R ⊇ , and seek a common term c such that a −−−→ R ⊆ c and b −−−→
ACsuperposition with constraints: No ACunifiers needed
 Proceedings 12th International Conference on Automated Deduction
, 1990
"... We prove the completeness of (basic) deduction strategies with constrained clauses modulo associativity and commutativity (AC). Here each inference generates one single conclusion with an additional equality s = AC t in its constraint (instead of one conclusion for each minimal ACunifier, i.e. expo ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
We prove the completeness of (basic) deduction strategies with constrained clauses modulo associativity and commutativity (AC). Here each inference generates one single conclusion with an additional equality s = AC t in its constraint (instead of one conclusion for each minimal ACunifier, i.e. exponentially many). Furthermore, computing ACunifiers is not needed at all. A clause C [[ T ]] is redundant if the constraint T is not ACunifiable. If C is the empty clause this has to be decided to know whether C [[ T ]] denotes an inconsistency. In all other cases any sound method to detect unsatisfiable constraints can be used. 1 Introduction Some fundamental ideas on applying symbolic constraints to theorem proving were given in [KKR90], where a constrained clause is a shorthand for its (infinite) set of ground instances satisfying the constraint. In a constrained equation f(x) ' a [[ x = g(y) ]], the equality `=' of the constraint is usually interpreted in T (F) (syntactic equality), ...
A Unification Algorithm for the Group DiffieHellman Protocol
 IN PROC. OF WITS 2002
, 2002
"... Equational unification can be an effective tool for the analysis of cryptographic protocols. This, for example ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
Equational unification can be an effective tool for the analysis of cryptographic protocols. This, for example
External Rewriting for Skeptical Proof Assistants
, 2002
"... This paper presents the design, the implementation and experiments of the integration of syntactic, conditional possibly associativecommutative term rewriting into proof assistants based on constructive type theory. Our approach is called external since it consists in performing term rewriting in a ..."
Abstract

Cited by 23 (5 self)
 Add to MetaCart
This paper presents the design, the implementation and experiments of the integration of syntactic, conditional possibly associativecommutative term rewriting into proof assistants based on constructive type theory. Our approach is called external since it consists in performing term rewriting in a speci c and ecient environment and to check the computations later in a proof assistant.
Rewrite Methods for Clausal and Nonclausal Theorem Proving
 in Proceedings of the Tenth International Conference on Automata, Languages and Programming
, 1983
"... Effective theorem provers are essential for automatic verification and generation of programs. The conventional resolution strategies, albeit complete, are inefficient. On the other hand, special purpose methods, such as term rewriting systems for solving word problems, are relatively efficient but ..."
Abstract

Cited by 23 (10 self)
 Add to MetaCart
(Show Context)
Effective theorem provers are essential for automatic verification and generation of programs. The conventional resolution strategies, albeit complete, are inefficient. On the other hand, special purpose methods, such as term rewriting systems for solving word problems, are relatively efficient but applicable to only limited classes of problems. In this paper, a simple canonical set of rewrite rules for Boolean algebra is presented. Based on this set of rules, the notion of term rewriting systems is generalized to provide complete proof strategies for first order predicate calculus. The methods are conceptually simple and can frequently utilize lemmas in proofs. Moreover, when the variables of the predicates involve some domain that has a canonical system, that system can be incorporated as rewrite rules, with the algebraic simplifications being done simultaneously with the merging of clauses. This feature is particularly useful in program verification, data type specification, and programming language design, where axioms can be expressed as equations (rewrite rules). Preliminary results from our implementation indicate that the methods are spaceefficient with respect to the number of rules generated (as compared to the number of resolvents in resolution provers). 2.
AN EQUATIONAL APPROACH TO THEOREM PROVING in firstorder predicate calculus
, 1985
"... A new approach for proving theorems in firstorder predicate calculus is developed based on term rewriting and polynomial simplification methods. A formula is translat ed into an equivalent set of formulae expressed in terms of 'true', 'false', 'exclusiveor', and &apos ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
A new approach for proving theorems in firstorder predicate calculus is developed based on term rewriting and polynomial simplification methods. A formula is translat ed into an equivalent set of formulae expressed in terms of 'true', 'false', 'exclusiveor', and 'and' by analyzing the semantics of its toplevel operator. In this representation, formulae are polynomials over atomic formulae with 'and' as multiplication and 'exclusiveor' as addition, and they can be manipulated just like polynomials using familiar rules of multiplication and addition. Polynomials representing a formula are converted into rewrite rules which are used to simplify polynomials. New rules are generated by overlapping polynomials using a criticalpair completion procedure closely related to the Knuth Bendix procedure. This process is repeated until a contradiction is reached or it is no longer possible to generate new rules. It is shown that resolution is subsumed by this method.
Open Problems in Rewriting
 Proceeding of the Fifth International Conference on Rewriting Techniques and Application (Montreal, Canada), LNCS 690
, 1991
"... Introduction Interest in the theory and applications of rewriting has been growing rapidly, as evidenced in part by four conference proceedings #including this one# #15, 26, 41,66#; three workshop proceedings #33, 47, 77#; #ve special journal issues #5,88, 24, 40, 67#; more than ten surveys #2,7,27 ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
Introduction Interest in the theory and applications of rewriting has been growing rapidly, as evidenced in part by four conference proceedings #including this one# #15, 26, 41,66#; three workshop proceedings #33, 47, 77#; #ve special journal issues #5,88, 24, 40, 67#; more than ten surveys #2,7,27, 28, 44, 56,57,76, 82, 81#; one edited collection of papers #1#; four monographs #3, 12,55,65#; and seven books #four of them still in progress# #8,9, 35, 54, 60,75, 84#. To encourage and stimulate continued progress in this area, wehave collected #with the help of colleagues# a number of problems that appear to us to be of interest and regarding whichwe do not know the answer. Questions on rewriting and other equational paradigms have been included; manyhave not aged su#ciently to be accorded the appellation #open problem". Wehave limited ourselves to theoretical questions, though there are certainly many additional interesting questions relating to applications and implementation
Normalised Rewriting and Normalised Completion
, 1994
"... We introduce normalised rewriting, a new rewrite relation. It generalises former notions of rewriting modulo E, dropping some conditions on E. For example, E can now be the theory of identity, idempotency, the theory of Abelian groups, the theory of commutative rings. We give a new completion algor ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
We introduce normalised rewriting, a new rewrite relation. It generalises former notions of rewriting modulo E, dropping some conditions on E. For example, E can now be the theory of identity, idempotency, the theory of Abelian groups, the theory of commutative rings. We give a new completion algorithm for normalised rewriting. It contains as an instance the usual AC completion algorithm, but also the wellknown Buchberger's algorithm for computing standard bases of polynomial ideals. We investigate the particular case of completion of ground equations, In this case we prove by a uniform method that completion modulo E terminates, for some interesting E. As a consequence, we obtain the decidability of the word problem for some classes of equational theories. We give implementation results which shows the efficiency of normalised completion with respect to completion modulo AC. 1 Introduction Equational axioms are very common in most sciences, including computer science. Equations can ...