Results 1 
2 of
2
Sparse Representations with Chirplets via Maximum Likelihood Estimation
"... We formulate the problem of approximating a signal with a sum of chirped Gaussians, the socalled chirplets, under the framework of maximum likelihood estimation. For a signal model of one chirplet in noise, we formulate the maximum likelihood estimator (MLE) and compute the Cram'erRao lower bound. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We formulate the problem of approximating a signal with a sum of chirped Gaussians, the socalled chirplets, under the framework of maximum likelihood estimation. For a signal model of one chirplet in noise, we formulate the maximum likelihood estimator (MLE) and compute the Cram'erRao lower bound. An approximate MLE is developed, based on timefrequency methods, and is applied sequentially to obtain a decomposition of multiple chirplets. The decomposition is refined after each iteration with the expectationmaximization algorithm. A version of the algorithm, which is O(N) for each chirplet of the decomposition, is applied to a data set of whale whistles. I. Introduction Chirplets are a class of signals that consists of Gaussians that are translated in time and frequency, scaled, and chirped. They are defined as s t;!;c;d = s(n; t; !; c; d) = ( p 2d) \Gamma 1 2 exp n \Gamma \Gamma n\Gammat 2d \Delta 2 + j c 2 (n \Gamma t) 2 + j!(n \Gamma t) o : where t, !, and c...
Open Access
"... Filtering in the joint time/chirprate domain for separation of quadratic and cubic phase chirp signals ..."
Abstract
 Add to MetaCart
Filtering in the joint time/chirprate domain for separation of quadratic and cubic phase chirp signals