Results 11  20
of
154
A Computational Model for Metric Spaces
 Theoretical Computer Science
, 1995
"... For every metric space X , we define a continuous poset BX such that X is homeomorphic to the set of maximal elements of BX with the relative Scott topology. The poset BX is a dcpo iff X is complete, and !continuous iff X is separable. The computational model BX is used to give domaintheoretic pro ..."
Abstract

Cited by 50 (9 self)
 Add to MetaCart
For every metric space X , we define a continuous poset BX such that X is homeomorphic to the set of maximal elements of BX with the relative Scott topology. The poset BX is a dcpo iff X is complete, and !continuous iff X is separable. The computational model BX is used to give domaintheoretic proofs of Banach's fixed point theorem and of two classical results of Hutchinson: on a complete metric space, every hyperbolic iterated function system has a unique nonempty compact attractor, and every iterated function system with probabilities has a unique invariant measure with bounded support. We also show that the probabilistic power domain of BX provides an !continuous computational model for measure theory on a separable complete metric space X . 1 Introduction In this paper, we establish new connections between the theory of metric spaces and domain theory, the two basic mathematical structures in computer science. For every metric space X, we define a continuous poset (not necessar...
Metrics for Labelled Markov Systems
, 2001
"... The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature of ..."
Abstract

Cited by 50 (10 self)
 Add to MetaCart
The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature of probabilistic processes. In a situation where the process behaviour has a quantitative aspect there should be a more robust approach to process equivalence. This paper studies a metric between labelled Markov processes. This metric has the property that processes are at zero distance if and only if they are bisimilar. The metric is inspired by earlier work on logics for characterizing bisimulation and is related, in spirit, to the Hutchinson metric.
An Extension Result for Continuous Valuations
, 1998
"... We show, by a simple and direct proof, that if a bounded valuation on a directed complete partial order (dcpo) is the supremum of a directed family of simple valuations then it has a unique extension to a measure on the Borel oealgebra of the dcpo with the Scott topology. It follows that every boun ..."
Abstract

Cited by 46 (6 self)
 Add to MetaCart
We show, by a simple and direct proof, that if a bounded valuation on a directed complete partial order (dcpo) is the supremum of a directed family of simple valuations then it has a unique extension to a measure on the Borel oealgebra of the dcpo with the Scott topology. It follows that every bounded and continuous valuation on a continuous domain can be extended uniquely to a Borel measure. The result also holds for oefinite valuations, but fails for dcpo's in general. 1
Combining effects: sum and tensor
"... We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations ..."
Abstract

Cited by 45 (5 self)
 Add to MetaCart
We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations that produce the effects. Effects qua theories are then combined by appropriate bifunctors on the category of theories. We give a theory for the sum of computational effects, which in particular yields Moggi’s exceptions monad transformer and an interactive input/output monad transformer. We further give a theory of the commutative combination of effects, their tensor, which yields Moggi’s sideeffects monad transformer. Finally we give a theory of operation transformers, for redefining operations when adding new effects; we derive explicit forms for the operation transformers associated to the above monad transformers.
Refinementoriented probability for CSP
, 1995
"... Jones and Plotkin give a general construction for forming a probabilistic powerdomain over any directedcomplete partial order [Jon90, JP89]. We apply their technique to the failures/divergences semantic model for Communicating Sequential Processes [Hoa85]. The resulting probabilistic model supports ..."
Abstract

Cited by 44 (7 self)
 Add to MetaCart
(Show Context)
Jones and Plotkin give a general construction for forming a probabilistic powerdomain over any directedcomplete partial order [Jon90, JP89]. We apply their technique to the failures/divergences semantic model for Communicating Sequential Processes [Hoa85]. The resulting probabilistic model supports a new binary operator, probabilistic choice, and retains all operators of CSP including its two existing forms of choice. An advantage of using the general construction is that it is easy to see which CSP identities remain true in the probabilistic model. A surprising consequence however is that probabilistic choice distributes through all other operators; such algebraic mobility means that the syntactic position of the choice operator gives little information about when the choice actually must occur. That in turn leads to some interesting interaction between probability and nondeterminism. A simple communications protocol is used to illustrate the probabilistic algebra, and several sugg...
Adequacy for algebraic effects
 In 4th FoSSaCS
, 2001
"... We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to ..."
Abstract

Cited by 42 (14 self)
 Add to MetaCart
(Show Context)
We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to obtain the logic, which is a classical firstorder multisorted logic with higherorder value and computation types, as in Levy’s callbypushvalue, a principle of induction over computations, a free algebra principle, and predicate fixed points. This logic embraces Moggi’s computational λcalculus, and also, via definable modalities, HennessyMilner logic, and evaluation logic, though Hoare logic presents difficulties. 1
Probabilistic Game Semantics
 Computer Science Society
, 2000
"... A category of HO/Nstyle games and probabilistic strategies is developedwhere the possible choices of a strategy are quantified so as to give a measure of the likelihood of seeing a given play. A 2sided die is shown to be universal in this category, in the sense that any strategy breaks down into a ..."
Abstract

Cited by 41 (1 self)
 Add to MetaCart
(Show Context)
A category of HO/Nstyle games and probabilistic strategies is developedwhere the possible choices of a strategy are quantified so as to give a measure of the likelihood of seeing a given play. A 2sided die is shown to be universal in this category, in the sense that any strategy breaks down into a composition between some deterministic strategy and that die. The interpretative power of the category is then demonstrated by delineating a Cartesian closed subcategory which provides a fully abstract model of a probabilistic extension of Idealized Algol.
pGCL: formal reasoning for random algorithms
, 1999
"... Dijkstra's guardedcommand language GCL contains explicit `demonic' nondeterminism, representing abstraction from (or ignorance of) which of two program fragments will be executed. We introduce probabilistic nondeterminism to the language, calling the result pGCL. Important is that both fo ..."
Abstract

Cited by 40 (11 self)
 Add to MetaCart
Dijkstra's guardedcommand language GCL contains explicit `demonic' nondeterminism, representing abstraction from (or ignorance of) which of two program fragments will be executed. We introduce probabilistic nondeterminism to the language, calling the result pGCL. Important is that both forms of nondeterminism are present  both demonic and probabilistic: unlike earlier approaches, we do not deal only with one or the other. The programming logic of `weakest preconditions' for GCL becomes a logic of `greatest preexpectations' for pGCL: we embed predicates (Booleanvalued expressions over state variables) into arithmetic by writing [P ], an expression that is 1 when P holds and 0 when it does not. Thus in a trivial sense [P ] is the probability that P is true, and such embedded predicates are the basis for the more elaborate arithmetic expressions that we call "expectations". pGCL is suitable for describing random algorithms, at least over discrete distributions. In our presentation o...
Computational Effects and Operations: An Overview
, 2004
"... We overview a programme to provide a unified semantics for computational effects based upon the notion of a countable enriched Lawvere theory. We define the notion of countable enriched Lawvere theory, show how the various leading examples of computational effects, except for continuations, give ris ..."
Abstract

Cited by 37 (8 self)
 Add to MetaCart
We overview a programme to provide a unified semantics for computational effects based upon the notion of a countable enriched Lawvere theory. We define the notion of countable enriched Lawvere theory, show how the various leading examples of computational effects, except for continuations, give rise to them, and we compare the definition with that of a strong monad. We outline how one may use the notion to model three natural ways in which to combine computational effects: by their sum, by their commutative combination, and by distributivity. We also outline a unified account of operational semantics. We present results we have already shown, some partial results, and our plans for further development of the programme.
Power domains and iterated function systems
 Information and Computation
, 1996
"... We introduce the notion of weakly hyperbolic iterated function system (IFS) on a compact metric space, which generalises that of hyperbolic IFS. Based on a domaintheoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniquene ..."
Abstract

Cited by 37 (11 self)
 Add to MetaCart
(Show Context)
We introduce the notion of weakly hyperbolic iterated function system (IFS) on a compact metric space, which generalises that of hyperbolic IFS. Based on a domaintheoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniqueness of the attractor of a weakly hyperbolic IFS and the invariant measure of a weakly hyperbolic IFS with probabilities, extending the classic results of Hutchinson for hyperbolic IFSs in this more general setting. We also present finite algorithms to obtain discrete and digitised approximations to the attractor and the invariant measure, extending the corresponding algorithms for hyperbolic IFSs. We then prove the existence and uniqueness of the invariant distribution of a weakly hyperbolic recurrent IFS and obtain an algorithm to generate the invariant distribution on the digitised screen. The generalised Riemann integral is used to provide a formula for the expected value of almost everywhere continuous functions with respect to this distribution. For hyperbolic recurrent IFSs and Lipschitz maps, one can estimate the integral up to any threshold of accuracy.] 1996 Academic Press, Inc. 1.