Results 1  10
of
100
Reactive, Generative and Stratified Models of Probabilistic Processes
 Information and Computation
, 1990
"... ion Let E; E 0 be PCCS expressions. The intermodel abstraction rule IMARGR is defined by E ff[p] \Gamma\Gamma! i E 0 =) E ff[p= G (E;fffg)] ae \Gamma\Gamma\Gamma\Gamma\Gamma\Gamma! i E 0 This rule uses the generative normalization function to convert generative probabilities to reactive ..."
Abstract

Cited by 155 (7 self)
 Add to MetaCart
ion Let E; E 0 be PCCS expressions. The intermodel abstraction rule IMARGR is defined by E ff[p] \Gamma\Gamma! i E 0 =) E ff[p= G (E;fffg)] ae \Gamma\Gamma\Gamma\Gamma\Gamma\Gamma! i E 0 This rule uses the generative normalization function to convert generative probabilities to reactive ones, thereby abstracting away from the relative probabilities between different actions. We can now define 'GR ('G (P )) as the reactive transition system that can be inferred from P 's generative transition system via IMARGR . By the same procedure as described at the end of Section 3.1, 'GR can be extended to a mapping 'GR : j GG ! j GR . Write P GR ¸ Q if P; Q 2 Pr are reactive bisimulation equivalent with respect to the transitions derivable from G+IMARGR , i.e. the theory obtained by adding IMARGR to the rules of Figure 7. The equivalence GR ¸ is defined just like R ¸ but using the cPDF ¯GR instead of ¯R . ¯GR is defined by ¯GR (P; ff; S) = X i2I R (=I G ) fj p i j G+ I...
Bisimulation for Labelled Markov Processes
 Information and Computation
, 1997
"... In this paper we introduce a new class of labelled transition systems  Labelled Markov Processes  and define bisimulation for them. ..."
Abstract

Cited by 139 (23 self)
 Add to MetaCart
In this paper we introduce a new class of labelled transition systems  Labelled Markov Processes  and define bisimulation for them.
Algebraic Reasoning for Probabilistic Concurrent Systems
 Proc. IFIP TC2 Working Conference on Programming Concepts and Methods
, 1990
"... We extend Milner's SCCS to obtain a calculus, PCCS, for reasoning about communicating probabilistic processes. In particular, the nondeterministic process summation operator of SCCS is replaced with a probabilistic one, in which the probability of behaving like a particular summand is given explicit ..."
Abstract

Cited by 94 (5 self)
 Add to MetaCart
We extend Milner's SCCS to obtain a calculus, PCCS, for reasoning about communicating probabilistic processes. In particular, the nondeterministic process summation operator of SCCS is replaced with a probabilistic one, in which the probability of behaving like a particular summand is given explicitly. The operational semantics for PCCS is based on the notion of probabilistic derivation, and is given structurally as a set of inference rules. We then present an equational theory for PCCS based on probabilistic bisimulation, an extension of Milner's bisimulation proposed by Larsen and Skou. We provide the first axiomatization of probabilistic bisimulation, a subset of which is relatively complete for finitestate probabilistic processes. In the probabilistic case, a notion of processes with almost identical behavior (i.e., with probability 1 \Gamma ffl, for ffl sufficiently small) appears to be more useful in practice than a notion of equivalence, since the latter is often too restricti...
A Per Model of Secure Information Flow in Sequential Programs
 HIGHERORDER AND SYMBOLIC COMPUTATION
, 1998
"... This paper proposes an extensional semanticsbased formal specification of secure informationflow properties in sequential programs based on representing degrees of security by partial equivalence relations (pers). The specification clarifies and unifies a number of specific correctness arguments i ..."
Abstract

Cited by 90 (18 self)
 Add to MetaCart
This paper proposes an extensional semanticsbased formal specification of secure informationflow properties in sequential programs based on representing degrees of security by partial equivalence relations (pers). The specification clarifies and unifies a number of specific correctness arguments in the literature and connections to other forms of program analysis. The approach is inspired by (and in the deterministic case equivalent to) the use of partial equivalence relations in specifying bindingtime analysis, and is thus able to specify security properties of higherorder functions and "partially confidential data". We also show how the per approach can handle nondeterminism for a firstorder language, by using powerdomain semantics and show how probabilistic security properties can be formalised by using probabilistic powerdomain semantics. We illustrate the usefulness of the compositional nature of the security specifications by presenting a straightforward correctness proof for a simple typebased security analysis.
Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
, 1998
"... . The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a ..."
Abstract

Cited by 75 (15 self)
 Add to MetaCart
. The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation. Keywords. Bisimulation, probabilistic transition system, coalgebra, ultrametric space, Borel measure, final coalgebra. 1 Introduction For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen and Skou [LS91] is regarded as the basic process equivalence. The definition was given for reactive systems. However, Van Glabbeek, Smolka and Steffen s...
Dynamical systems, Measures and Fractals via Domain Theory
 Information and Computation
, 1995
"... We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L ar ..."
Abstract

Cited by 69 (19 self)
 Add to MetaCart
We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L are respectively the Vietoris hyperspace, the upper hyperspace and the lower hyperspace functors. We show that if (X, f) is chaotic, then so is (UX, U f). When X is locally compact UX, is a continuous bounded complete dcpo. If X is second countable as well, then UX will be omegacontinuous and can be given an effective structure. We show how strange attractors, attractors of iterated function systems (fractals) and Julia sets are obtained effectively as fixed points of deterministic functions on UX or fixed points of nondeterministic functions on CUX where C is the convex (Plotkin) power domain. We also show that the set, M(X), of finite Borel measures on X can be embedded in PUX, where P is the probabilistic power domain. This provides an effective framework for measure theory. We then prove that the invariant measure of an hyperbolic iterated function system with probabilities can be obtained as the unique fixed point of an associated continuous function on PUX.
Domain Theory and Integration
 Theoretical Computer Science
, 1995
"... We present a domaintheoretic framework for measure theory and integration of bounded realvalued functions with respect to bounded Borel measures on compact metric spaces. The set of normalised Borel measures of the metric space can be embedded into the maximal elements of the normalised probabilis ..."
Abstract

Cited by 59 (12 self)
 Add to MetaCart
We present a domaintheoretic framework for measure theory and integration of bounded realvalued functions with respect to bounded Borel measures on compact metric spaces. The set of normalised Borel measures of the metric space can be embedded into the maximal elements of the normalised probabilistic power domain of its upper space. Any bounded Borel measure on the compact metric space can then be obtained as the least upper bound of an !chain of linear combinations of point valuations (simple valuations) on the upper space, thus providing a constructive setup for these measures. We use this setting to define a new notion of integral of a bounded realvalued function with respect to a bounded Borel measure on a compact metric space. By using an !chain of simple valuations, whose lub is the given Borel measure, we can then obtain increasingly better approximations to the value of the integral, similar to the way the Riemann integral is obtained in calculus by using step functions. ...
Notions of Computation Determine Monads
 Proc. FOSSACS 2002, Lecture Notes in Computer Science 2303
, 2002
"... We give semantics for notions of computation, also called computational effects, by means of operations and equations. We show that these generate several of the monads of primary interest that have been used to model computational effects, with the striking omission of the continuations monad, demo ..."
Abstract

Cited by 54 (7 self)
 Add to MetaCart
We give semantics for notions of computation, also called computational effects, by means of operations and equations. We show that these generate several of the monads of primary interest that have been used to model computational effects, with the striking omission of the continuations monad, demonstrating the latter to be of a different character, as is computationally true. We focus on semantics for global and local state, showing that taking operations and equations as primitive yields a mathematical relationship that reflects their computational relationship.
Metrics for Labelled Markov Systems
, 2001
"... The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature of ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature of probabilistic processes. In a situation where the process behaviour has a quantitative aspect there should be a more robust approach to process equivalence. This paper studies a metric between labelled Markov processes. This metric has the property that processes are at zero distance if and only if they are bisimilar. The metric is inspired by earlier work on logics for characterizing bisimulation and is related, in spirit, to the Hutchinson metric.
Metrics for Labelled Markov Processes
, 2003
"... The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature ..."
Abstract

Cited by 45 (10 self)
 Add to MetaCart
The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature of probabilistic processes. In a situation where the process behaviour has a quantitative aspect there should be a more robust approach to process equivalence. This paper studies a metric between labelled Markov processes. This metric has the property that processes are at zero distance if and only if they are bisimilar. The metric is inspired by earlier work on logics for characterizing bisimulation and is related, in spirit, to the Kantorovich metric.