Results 11  20
of
46
A logical framework with dependently typed records
 In Proceedings of TLCA 2003, volume 2701 of LNCS
, 2003
"... ..."
Computational Foundations of Basic Recursive Function Theory
 Theoretical Computer Science
, 1988
"... The theory of computability, or basic recursive function theory as it is often called, is usually motivated and developed using Church's Thesis. Here we show that there is an alternative computability theory in which some of the basic results on unsolvability become more absolute, results on complet ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
The theory of computability, or basic recursive function theory as it is often called, is usually motivated and developed using Church's Thesis. Here we show that there is an alternative computability theory in which some of the basic results on unsolvability become more absolute, results on completeness become simpler, and many of the central concepts become more abstract. In this approach computations are viewed as mathematical objects, and the major theorems in recursion theory may be classified according to which axioms about computation are needed to prove them. The theory is a typed theory of functions over the natural numbers, and there are unsolvable problems in this setting independent of the existence of indexings. The unsolvability results are interpreted to show that the partial function concept, so important in computer science, serves to distinguish between classical and constructive type theories (in a different way than does the decidability concept as expressed in the ...
Dependent Intersection: A New Way of Defining Records in Type Theory
"... Record types are an important tool for programming and are essential in objectoriented calculi. Dependent record types are proven to be very useful for program specification and verification. Unfortunately, all known embedding of the dependent record type in the type theory had some imperfections. I ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
Record types are an important tool for programming and are essential in objectoriented calculi. Dependent record types are proven to be very useful for program specification and verification. Unfortunately, all known embedding of the dependent record type in the type theory had some imperfections. In this paper we present a new type constructor, dependent intersection, i.e., the intersection of two types, where the second type may depend on elements of the first one (do not confuse it with the intersection of a family of types). This new type constructor allows us to define dependent records in a very simple way.
Foundations for the Implementation of HigherOrder Subtyping
, 1997
"... We show how to implement a calculus with higherorder subtyping and subkinding by replacing uses of implicit subsumption with explicit coercions. To ensure this can be done, a polymorphic function is adjusted to take, as an additional argument, a proof that its type constructor argument has the desi ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
We show how to implement a calculus with higherorder subtyping and subkinding by replacing uses of implicit subsumption with explicit coercions. To ensure this can be done, a polymorphic function is adjusted to take, as an additional argument, a proof that its type constructor argument has the desired kind. Such a proof is extracted from the derivation of a kinding judgement and may in turn require proof coercions, which are extracted from subkinding judgements. This technique is formalized as a typedirected translation from a calculus of higherorder subtyping to a subtypingfree calculus. This translation generalizes an existing result for secondorder subtyping calculi (such as F ). We also discuss two interpretations of subtyping, one that views it as type inclusion and another that views it as the existence of a wellbehaved coercion, and we show, by a typetheoretic construction, that our translation is the minimum consequence of shifting from the inclusion interpretation to th...
Reasoning About Functional Programs in Nuprl
 In Functional Programming, Concurrency, Simulation and Automated Reasoning
, 1993
"... . There are two ways of reasoning about functional programs in the constructive type theory of the Nuprl proof development system. Nuprl can be used in a conventional programverification mode, in which functional programs are written in a familiar style and then proven to be correct. It can als ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
. There are two ways of reasoning about functional programs in the constructive type theory of the Nuprl proof development system. Nuprl can be used in a conventional programverification mode, in which functional programs are written in a familiar style and then proven to be correct. It can also be used in an extraction mode, where programs are not written explicitly, but instead are extracted from mathematical proofs. Nuprl is the only constructive type theory to support both of these approaches. These approaches are illustrated by applying Nuprl to Boyer and Moore's "majority" algorithm. 1 Introduction A type system for a functional programming language can be syntactic or semantic. In a syntactically typed language, such as SML 1 [25], typing is a property of the syntax of expressions. Only certain combinations of language constructs are designated "welltyped", and only welltyped expressions are given a meaning. Each welltyped expression has a type which can be derive...
A Computational Approach to Reflective MetaReasoning about Languages with Bindings
 In MERLIN ’05: Proceedings of the 3rd ACM SIGPLAN workshop on Mechanized
, 2005
"... We present a foundation for a computational metatheory of languages with bindings implemented in a computeraided formal reasoning environment. Our theory provides the ability to reason abstractly about operators, languages, openended languages, classes of languages, etc. The theory is based on th ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
We present a foundation for a computational metatheory of languages with bindings implemented in a computeraided formal reasoning environment. Our theory provides the ability to reason abstractly about operators, languages, openended languages, classes of languages, etc. The theory is based on the ideas of higherorder abstract syntax, with an appropriate induction principle parameterized over the language (i.e. a set of operators) being used. In our approach, both the bound and free variables are treated uniformly and this uniform treatment extends naturally to variablelength bindings. The implementation is reflective, namely there is a natural mapping between the metalanguage of the theoremprover and the object language of our theory. The object language substitution operation is mapped to the metalanguage substitution and does not need to be defined recursively. Our approach does not require designing a custom type theory; in this paper we describe the implementation of this foundational theory within a generalpurpose type theory. This work is fully implemented in the MetaPRL theorem prover, using the preexisting NuPRLlike MartinL ofstyle computational type theory. Based on this implementation, we lay out an outline for a framework for programming language experimentation and exploration as well as a general reflective reasoning framework. This paper also includes a short survey of the existing approaches to syntactic reflection. 1
The structure of nuprl’s type theory
, 1997
"... on the World Wide Web (\the Web") (www.cs.cornell.edu/Info/NuPrl/nuprl.html) ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
on the World Wide Web (\the Web") (www.cs.cornell.edu/Info/NuPrl/nuprl.html)
Partial computations in constructive type theory
 JOURNAL OF LOGIC AND COMPUTATION
, 1991
"... Constructive type theory as conceived by Per MartinLöf has a very rich type system, but partial functions cannot be typed. This also makes it impossible to directly write recursive programs. In this paper a constructive type theory Red is defined which includes a partial type constructor A; objects ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Constructive type theory as conceived by Per MartinLöf has a very rich type system, but partial functions cannot be typed. This also makes it impossible to directly write recursive programs. In this paper a constructive type theory Red is defined which includes a partial type constructor A; objects in the type A may diverge, but if they converge, they must be members of A. A fixed point typing principle is given to allow typing of recursive functions. The extraction paradigm of type theory, whereby programs are automatically extracted from constructive proofs, is extended to allow extraction of fixed points. There is a Scott fixed point induction principle for reasoning about these functions. Soundness of the theory is proven. Type theory becomes a more expressive programming logic as a result.
Reflecting higherorder abstract syntax in NuPRL
 Theorem Proving in Higher Order Logics; Track B Proceedings of the 15 th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2002
, 2002
"... Abstract. This document describes part of an effort to achieve in Nuprl a practical reflection of its expression syntax. This reflection is done at the granularity of the operators; in particular, each operator of the syntax is denoted by another operator of the same syntax. Further, the syntax has ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
Abstract. This document describes part of an effort to achieve in Nuprl a practical reflection of its expression syntax. This reflection is done at the granularity of the operators; in particular, each operator of the syntax is denoted by another operator of the same syntax. Further, the syntax has binding operators, and we organize reflection not around the concrete binding syntax, but instead, around the abstract higherorder syntax. We formulate and prove the correctness of a core rule for inferring wellformedness of instances of operatordenoting operators. 1
Markov’s principle for propositional type theory
 Computer Science Logic, Proceedings of the 10 th Annual Conference of the EACSL
, 2001
"... Abstract. In this paper we show how to extend a constructive type theory with a principle that captures the spirit of Markov’s principle from constructive recursive mathematics. Markov’s principle is especially useful for proving termination of specific computations. Allowing a limited form of class ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Abstract. In this paper we show how to extend a constructive type theory with a principle that captures the spirit of Markov’s principle from constructive recursive mathematics. Markov’s principle is especially useful for proving termination of specific computations. Allowing a limited form of classical reasoning we get more powerful resulting system which remains constructive and valid in the standard constructive semantics of a type theory. We also show that this principle can be formulated and used in a propositional fragment of a type theory.