Results 1  10
of
56
Equality In Lazy Computation Systems
, 1998
"... In this paper we introduce a general class of lazy computation systems and define a natural program equivalence for them. We prove that if an extensionality condition holds of each of the operators of a computation system, then the equivalence relation is a congruence, so that the usual kinds of equ ..."
Abstract

Cited by 101 (6 self)
 Add to MetaCart
In this paper we introduce a general class of lazy computation systems and define a natural program equivalence for them. We prove that if an extensionality condition holds of each of the operators of a computation system, then the equivalence relation is a congruence, so that the usual kinds of equality reasoning are valid for it. This condition is a simple syntactic one, and is easy to verify for the various lazy computation systems we have considered so far. We also give conditions under which the equivalence coincides with observational congruence. These results have some important consequences for type theories like those of MartinLöf and Nuprl.
The Semantics of Reflected Proof
 IN PROC. OF FIFTH SYMP. ON LOGIC IN COMP. SCI
, 1990
"... We begin to lay the foundations for reasoning about proofs whose steps include both invocations of programs to build subproofs (tactics) and references to representations of proofs themselves (reflected proofs). The main result is the definition of a single type of proof which can mention itself, ..."
Abstract

Cited by 90 (11 self)
 Add to MetaCart
We begin to lay the foundations for reasoning about proofs whose steps include both invocations of programs to build subproofs (tactics) and references to representations of proofs themselves (reflected proofs). The main result is the definition of a single type of proof which can mention itself, using a new technique which finds a fixed point of a mapping between metalanguage and object language. This single type contrasts with hierarchies of types used in other approaches to accomplish the same classification. We show that these proofs are valid, and that every proof can be reduced to a proof involving only primitive inference rules. We also show how to extend the results to proofs from which programs (such as tactics) can be derived, and to proofs that can refer to a library of definitions and previously proven theorems. We believe that the mechanism of reflection is fundamental in building proof development systems, and we illustrate its power with applications to automating reasoning and describing modes of computation.
A General Formulation of Simultaneous InductiveRecursive Definitions in Type Theory
 Journal of Symbolic Logic
, 1998
"... The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by re ..."
Abstract

Cited by 66 (9 self)
 Add to MetaCart
The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by recursion on the way the elements of U0 are generated. In this paper we argue that there is an underlying general notion of simultaneous inductiverecursive definition which is implicit in MartinLöf's intuitionistic type theory. We extend previously given schematic formulations of inductive definitions in type theory to encompass a general notion of simultaneous inductionrecursion. This enables us to give a unified treatment of several interesting constructions including various universe constructions by Palmgren, Griffor, Rathjen, and Setzer and a constructive version of Aczel's Frege structures. Consistency of a restricted version of the extension is shown by constructing a realisability model ...
Enhancing the Nuprl Proof Development System and Applying it to Computational Abstract Algebra
, 1995
"... This thesis describes substantial enhancements that were made to the software tools in the Nuprl system that are used to interactively guide the production of formal proofs. Over 20,000 lines of code were written for these tools. Also, a corpus of formal mathematics was created that consists of rou ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
This thesis describes substantial enhancements that were made to the software tools in the Nuprl system that are used to interactively guide the production of formal proofs. Over 20,000 lines of code were written for these tools. Also, a corpus of formal mathematics was created that consists of roughly 500 definitions and 1300 theorems. Much of this material is of a foundational nature and supports all current work in Nuprl. This thesis concentrates on describing the half of this corpus that is concerned with abstract algebra and that covers topics central to the mathematics of the co...
A finite axiomatization of inductiverecursive definitions
 Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science
, 1999
"... Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an in ..."
Abstract

Cited by 44 (14 self)
 Add to MetaCart
(Show Context)
Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an inductively defined set substantially and allows us to introduce universes and higher order universes (but not a Mahlo universe). In this article we give a finite axiomatization of inductiverecursive definitions. We prove consistency by constructing a settheoretic model which makes use of one Mahlo cardinal. 1
Semantic Foundations for Embedding HOL in Nuprl
 ALGEBRAIC METHODOLOGY AND SOFTWARE TECHNOLOGY
, 1996
"... We give a new semantics for Nuprl's constructive type theory that justifies a useful embedding of the logic of the HOL theorem prover inside Nuprl. The embedding gives Nuprl effective access to most of the large body of formalized mathematics that the HOL community has amassed over the las ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
We give a new semantics for Nuprl's constructive type theory that justifies a useful embedding of the logic of the HOL theorem prover inside Nuprl. The embedding gives Nuprl effective access to most of the large body of formalized mathematics that the HOL community has amassed over the last decade. The new semantics is dramatically simpler than the old, and gives a novel and general way of adding settheoretic equivalence classes to untyped functional programming languages.
Formal Objects in Type Theory Using Very Dependent Types
 In Foundations of Object Oriented Languages 3
, 1996
"... In this paper we present an extension to basic type theory to allow a uniform construction of abstract data types (ADTs) having many of the properties of objects, including abstraction, subtyping, and inheritance. The extension relies on allowing type dependencies for function types to range over ..."
Abstract

Cited by 29 (8 self)
 Add to MetaCart
(Show Context)
In this paper we present an extension to basic type theory to allow a uniform construction of abstract data types (ADTs) having many of the properties of objects, including abstraction, subtyping, and inheritance. The extension relies on allowing type dependencies for function types to range over a wellfounded domain. Using the propositionsastypes correspondence, abstract data types can be identified with logical theories, and proofs of the theories are the objects that inhabit the corresponding ADT. 1 Introduction In the past decade, there has been considerable progress in developing formal account of a theory of objects. One property of object oriented languages that make them popular is that they attack the problem of scale: all object oriented languages provide mechanisms for providing software modularity and reuse. In addition, the mechanisms are intuitive enough to be followed easily by novice programmers. During the same decade, the body of formal mathematics has be...
Inductionrecursion and initial algebras
 Annals of Pure and Applied Logic
, 2003
"... 1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott ("Constructive Validity") [31] and MartinL"of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL"of's definition ..."
Abstract

Cited by 29 (11 self)
 Add to MetaCart
(Show Context)
1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott (&quot;Constructive Validity&quot;) [31] and MartinL&quot;of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL&quot;of's definition of a universe `a la Tarski [19], which consists of a set U
Normalization by evaluation for MartinLöf type theory with one universe
 IN 23RD CONFERENCE ON THE MATHEMATICAL FOUNDATIONS OF PROGRAMMING SEMANTICS, MFPS XXIII, ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE
, 2007
"... ..."
A logical framework with dependently typed records
 In Proceedings of TLCA 2003, volume 2701 of LNCS
, 2003
"... ..."