Results 1 
2 of
2
Proving primality in essentially quartic random time
 Math. Comp
, 2003
"... Abstract. This paper presents an algorithm that, given a prime n, finds and verifies a proof of the primality of n in random time (lg n) 4+o(1). Several practical speedups are incorporated into the algorithm and discussed in detail. 1. ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
Abstract. This paper presents an algorithm that, given a prime n, finds and verifies a proof of the primality of n in random time (lg n) 4+o(1). Several practical speedups are incorporated into the algorithm and discussed in detail. 1.
Looking for an analogue of Rice's Theorem in circuit complexity theory
 Mathematical Logic Quarterly
, 1989
"... Abstract. Rice’s Theorem says that every nontrivial semantic property of programs is undecidable. In this spirit we show the following: Every nontrivial absolute (gap, relative) counting property of circuits is UPhard with respect to polynomialtime Turing reductions. For generators [31] we show a ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. Rice’s Theorem says that every nontrivial semantic property of programs is undecidable. In this spirit we show the following: Every nontrivial absolute (gap, relative) counting property of circuits is UPhard with respect to polynomialtime Turing reductions. For generators [31] we show a perfect analogue of Rice’s Theorem. Mathematics Subject Classification: 03D15, 68Q15. Keywords: Rice’s Theorem, Counting problems, Promise classes, UPhard, NPhard, generators.