Results 1 
3 of
3
Multilevel Visualization of Clustered Graphs
, 1997
"... Clustered graphs are graphs with recursive clustering structures over the vertices. This type of structure appears in many systems. Examples include CASE tools, management information systems, VLSI design tools, and reverse engineering systems. Existing layout algorithms represent the clustering str ..."
Abstract

Cited by 80 (2 self)
 Add to MetaCart
Clustered graphs are graphs with recursive clustering structures over the vertices. This type of structure appears in many systems. Examples include CASE tools, management information systems, VLSI design tools, and reverse engineering systems. Existing layout algorithms represent the clustering structure as recursively nested regions in the plane. However, as the structure becomes more and more complex, two dimensional plane representations tend to be insufficient. In this paper, firstly, we describe some two dimensional plane drawing algorithms for clustered graphs; then we show how to extend two dimensional plane drawings to three dimensional multilevel drawings. We consider two conventions: straightline convex drawings and orthogonal rectangular drawings; and we show some examples. 1 Introduction Graph drawing algorithms are widely used in graphical user interfaces of software systems. As the amount of information that we want to visualize becomes larger, we need more structure ...
Orthogonal Grid Drawing of Clustered Graphs
, 1996
"... Clustered graphs are graphs with recursive clustering structures over the vertices. For graphical representation, the clustering structure is represented by a simple region that contains the drawing of all the vertices which belong to that cluster. In this paper, we present an algorithm which pro ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
Clustered graphs are graphs with recursive clustering structures over the vertices. For graphical representation, the clustering structure is represented by a simple region that contains the drawing of all the vertices which belong to that cluster. In this paper, we present an algorithm which produces planar drawings of clustered graphs in a convention known as orthogonalgrid rectangular cluster drawings. The drawing produced by the algorithm has constant number of bends on each edge and has O(n 2 ) area, which is as good as existing results for classical graph drawings. 1 Introduction Clustered graphs are graphs with recursive clustering structures over the vertices (see Fig. 1). This type of clustering structure appears in many systems. Examples include CASE tools [19], management information systems [10], and VLSI design tools [8]. For graphical representation, the clustering structure is represented by a simple region that contains the drawing of all the vertices which ...
Drawing Clustered Graphs on an Orthogonal Grid (Extended Abstract)
 J. Graph Algorithms Appl
, 1997
"... Clustered graphs are graphs with recursive clustering structures over the vertices. For graphical representation, the clustering structure is represented by a simple region that contains the drawing of all the vertices which belong to that cluster. In this paper, we present an algorithm which produc ..."
Abstract
 Add to MetaCart
Clustered graphs are graphs with recursive clustering structures over the vertices. For graphical representation, the clustering structure is represented by a simple region that contains the drawing of all the vertices which belong to that cluster. In this paper, we present an algorithm which produces planar drawings of clustered graphs in a convention known as orthogonal grid rectangular cluster drawings. We present an algorithm which produces such drawings with O(n 2 ) area and with at most 3 bends in each edge. This result is as good as existing results for classical planar graphs. Further, we show that the bend performance of our algorithm is optimal. (Extended Abstract) 1 Introduction Clustered graphs are graphs with recursive clustering structures over the vertices (see Figure 1). This type of clustering structure appears in many systems. Examples include CASE tools [40], management information systems [19], and VLSI design tools [15]. For graphical representation, the clust...