Results 1 
7 of
7
Internal set theory: A new approach to nonstandard analysis
 Bull. Amer. Math. Soc
, 1977
"... 1. Internal set theory. We present here a new approach to Abraham Robinson's nonstandard analysis [10] with the aim of making these powerful methods readily available to the working mathematician. This approach to nonstandard analysis is based on a theory which we call internal set theory (1ST). We ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
1. Internal set theory. We present here a new approach to Abraham Robinson's nonstandard analysis [10] with the aim of making these powerful methods readily available to the working mathematician. This approach to nonstandard analysis is based on a theory which we call internal set theory (1ST). We start with axiomatic set theory, say ZFC (ZermeloFraenkel set theory with the axiom of choice [1]). In addition to the usual undefined binary predicate E of set theory we adjoin a new undefined unary predicate standard. The axioms of 1ST are the usual axioms of ZFC plus three others, which we will state below. All theorems of conventional mathematics remain valid. No change in terminology is required. What is new in internal set theory is only an addition, not a change. We choose to call certain sets standard (and we recall that in ZFC every mathematical objecta real number, a function, etc.is a set), but the theorems of conventional mathematics apply to all sets, nonstandard as well as standard.
Gödel's program for new axioms: Why, where, how and what?
 IN GODEL '96
, 1996
"... From 1931 until late in his life (at least 1970) Gödel called for the pursuit of new axioms for mathematics to settle both undecided numbertheoretical propositions (of the form obtained in his incompleteness results) and undecided settheoretical propositions (in particular CH). As to the nature of ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
From 1931 until late in his life (at least 1970) Gödel called for the pursuit of new axioms for mathematics to settle both undecided numbertheoretical propositions (of the form obtained in his incompleteness results) and undecided settheoretical propositions (in particular CH). As to the nature of these, Gödel made a variety of suggestions, but most frequently he emphasized the route of introducing ever higher axioms of in nity. In particular, he speculated (in his 1946 Princeton remarks) that there might be a uniform (though nondecidable) rationale for the choice of the latter. Despite the intense exploration of the "higher infinite" in the last 30odd years, no single rationale of that character has emerged. Moreover, CH still remains undecided by such axioms, though they have been demonstrated to have many other interesting settheoretical consequences. In this paper, I present a new very general notion of the "unfolding" closure of schematically axiomatized formal systems S which provides a uniform systematic means of expanding in an essential way both the language and axioms (and hence theorems) of such systems S. Reporting joint work with T. Strahm, a characterization is given in more familiar terms in the case that S is a basic
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
GÖDEL AND SET THEORY
"... Kurt Gödel (1906–1978) with his work on the constructible universe L established the relative consistency of the Axiom of Choice (AC) and the Continuum Hypothesis (CH). More broadly, he ensured the ascendancy of firstorder logic as the framework and a matter of method for set theory and secured the ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Kurt Gödel (1906–1978) with his work on the constructible universe L established the relative consistency of the Axiom of Choice (AC) and the Continuum Hypothesis (CH). More broadly, he ensured the ascendancy of firstorder logic as the framework and a matter of method for set theory and secured the cumulative hierarchy view of the universe of sets. Gödel thereby transformed set theory and launched it with structured subject matter and specific methods of proof. In later years Gödel worked on a variety of settheoretic constructions and speculated about how problems might be settled with new axioms. We here chronicle this development from the point of view of the evolution of set theory as a field of mathematics. Much has been written, of course, about Gödel’s work in set theory, from textbook expositions to the introductory notes to his collected papers. The present account presents an integrated view of the historical and mathematical development as supported by his recently published lectures and correspondence. Beyond the surface of things we delve deeper into the mathematics. What emerges
BERNAYS AND SET THEORY
"... Abstract. We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles. Paul Isaak Bernays (1888–1977) is an important figure in the development of mathematical logic, being the main bridge between Hilbert and Göd ..."
Abstract
 Add to MetaCart
Abstract. We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles. Paul Isaak Bernays (1888–1977) is an important figure in the development of mathematical logic, being the main bridge between Hilbert and Gödel in the intermediate generation and making contributions in proof theory, set theory, and the philosophy of mathematics. Bernays is best known for the twovolume 1934,1939 Grundlagen der Mathematik [39, 40], written solely by him though Hilbert was retained as first author. Going into many reprintings and an eventual second edition thirty years later, this monumental work provided a magisterial exposition of the work of the Hilbert school in the formalization of firstorder logic and in proof theory and the work of Gödel on incompleteness and its surround, including the first complete proof of the Second Incompleteness Theorem. 1 Recent reevaluation of Bernays ’ role actually places him at the center of the development of mathematical logic and Hilbert’s program. 2 But starting in his forties, Bernays did his most individuated, distinctive mathematical work in set theory, providing a timely axiomatization and later applying higherorder reflection principles, and produced a stream of
SET THEORY FOR CATEGORY THEORY
, 810
"... Abstract. Questions of settheoretic size play an essential role in category theory, especially the distinction between sets and proper classes (or small sets and large sets). There are many different ways to formalize this, and which choice is made can have noticeable effects on what categorical co ..."
Abstract
 Add to MetaCart
Abstract. Questions of settheoretic size play an essential role in category theory, especially the distinction between sets and proper classes (or small sets and large sets). There are many different ways to formalize this, and which choice is made can have noticeable effects on what categorical constructions are permissible. In this expository paper we summarize and compare a number