Results 1  10
of
41
ManySorted Coalgebraic Modal Logic: a Modeltheoretic Study
 Theoretical Informatics and Applications
, 2001
"... This paper gives a semantical underpinning for a manysorted modal logic associated with certain dynamical systems, like transition systems, automata or classes in objectoriented languages. These systems will be described as coalgebras of socalled polynomial functors, built up from constants an ..."
Abstract

Cited by 53 (3 self)
 Add to MetaCart
This paper gives a semantical underpinning for a manysorted modal logic associated with certain dynamical systems, like transition systems, automata or classes in objectoriented languages. These systems will be described as coalgebras of socalled polynomial functors, built up from constants and identities, using products, coproducts and powersets. The semantical account involves Boolean algebras with operators indexed by polynomial functors, called MBAOs, for Manysorted Boolean Algebras with Operators, combining standard (categorical) models of modal logic and of manysorted predicate logic.
Coalgebraic modal logic: Soundness, completeness and decidability of local consequence
 Theoret. Comput. Sci
, 2002
"... This paper studies finitary modal logics, interpreted over coalgebras for an endofunctor, and establishes soundness, completeness and decidability results. The logics are studied within the abstract framework of coalgebraic modal logic, which can be instantiated with arbitrary endofunctors on the ca ..."
Abstract

Cited by 51 (24 self)
 Add to MetaCart
This paper studies finitary modal logics, interpreted over coalgebras for an endofunctor, and establishes soundness, completeness and decidability results. The logics are studied within the abstract framework of coalgebraic modal logic, which can be instantiated with arbitrary endofunctors on the category of sets. This is achieved through the use of predicate liftings, which generalise atomic propositions and modal operators from Kripke models to arbitrary coalgebras. Predicate liftings also allow us to use induction along the terminal sequence of the underlying endofunctor as a proof principle. This induction principle is systematically exploited to establish soundness, completeness and decidability of the logics. We believe that this induction principle also opens new ways for reasoning about modal logics: Our proof of completeness does not rely on a canonical model construction, and the proof of the finite model property does not use filtrations. 1
Coalgebras and Modal Logic
 Coalgebraic Methods in Computer Science, Volume 33 in Electronic Notes in Theoretical Computer Science
, 2000
"... Coalgebras are of growing importance in theoretical computer science. To develop languages for them is significant for the specification and verification of systems modelled with them. Modal logic has proved to be suitable for this purpose. So far, most approaches have presented a language to descri ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
Coalgebras are of growing importance in theoretical computer science. To develop languages for them is significant for the specification and verification of systems modelled with them. Modal logic has proved to be suitable for this purpose. So far, most approaches have presented a language to describe only deterministic coalgebras. The present paper introduces a generalization that also covers nondeterministic systems. As a special case, we obtain the "usual" modal logic for Kripkestructures. Models for our modal language L F are Fcoalgebras where the functor F is inductively constructed from constant sets and the identity functor using product, coproduct, exponentiation, and the power set functor. We define a language L F and show that it embeds into L F . We prove that, for imagefinite coalgebras, L F is expressive enough to distinguish elements up to bisimilarity and therefore L F does so, too. Moreover, we also give a complete calculus for L F in case the constants...
Semantical Principles in the Modal Logic of Coalgebraic
"... Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natur ..."
Abstract

Cited by 30 (6 self)
 Add to MetaCart
Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natural completeness condition) expressive enough to characterise elements of the underlying state space up to bisimulation. Like Moss' coalgebraic logic, the theory can be applied to an arbitrary signature functor on the category of sets. Also, an upper bound for the size of conjunctions and disjunctions needed to obtain characteristic formulas is given.
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 26 (15 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
A Finite Model Construction For Coalgebraic Modal Logic
"... In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness result ..."
Abstract

Cited by 24 (16 self)
 Add to MetaCart
In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness results for coalgebraic modal logic, which we push further by establishing that every coalgebraic modal logic admits a complete axiomatization of rank 1; it also enables us to establish a generic decidability result and a first complexity bound. Examples covered by these general results include, besides standard HennessyMilner logic, graded modal logic and probabilistic modal logic.
Modular construction of modal logics
 Concurrency Theory, CONCUR 04, volume 3170 of Lect. Notes Comput. Sci
, 2004
"... Abstract. We present a modular approach to defining logics for a wide variety of statebased systems. We use coalgebras to model the behaviour of systems, and modal logics to specify behavioural properties of systems. We show that the syntax, semantics and proof systems associated to such logics can ..."
Abstract

Cited by 22 (7 self)
 Add to MetaCart
Abstract. We present a modular approach to defining logics for a wide variety of statebased systems. We use coalgebras to model the behaviour of systems, and modal logics to specify behavioural properties of systems. We show that the syntax, semantics and proof systems associated to such logics can all be derived in a modular way. Moreover, we show that the logics thus obtained inherit soundness, completeness and expressiveness properties from their building blocks. We apply these techniques to derive sound, complete and expressive logics for a wide variety of probabilistic systems. 1
Towards a Duality Result in the Modal Logic of Coalgebras
 In Coalgebraic Methods in Computer Science, volume 33 of ENTCS
, 2000
"... This paper forms a step in the development of the recently emerged connection between coalgebra and modal logic. It introduces (backandforth) transformations between coalgebras of simple polynomial functors and certain Boolean algebras with operators (BAOs). Categorically, these transformations ta ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
This paper forms a step in the development of the recently emerged connection between coalgebra and modal logic. It introduces (backandforth) transformations between coalgebras of simple polynomial functors and certain Boolean algebras with operators (BAOs). Categorically, these transformations take the form of an adjunction. The BAO associated with a coalgebra can be used for specification, e.g. of classes in objectoriented languages.
Algebraiccoalgebraic specification in CoCasl
 J. LOGIC ALGEBRAIC PROGRAMMING
, 2006
"... We introduce CoCasl as a simple coalgebraic extension of the algebraic specification language Casl. CoCasl allows the nested combination of algebraic datatypes and coalgebraic process types. We show that the wellknown coalgebraic modal logic can be expressed in CoCasl. We present sufficient criter ..."
Abstract

Cited by 19 (8 self)
 Add to MetaCart
We introduce CoCasl as a simple coalgebraic extension of the algebraic specification language Casl. CoCasl allows the nested combination of algebraic datatypes and coalgebraic process types. We show that the wellknown coalgebraic modal logic can be expressed in CoCasl. We present sufficient criteria for the existence of cofree models, also for several variants of nested cofree and free specifications. Moreover, we describe an extension of the existing proof support for Casl (in the shape of an encoding into higherorder logic) to CoCasl.
Coalgebraic Modal Logic of Finite Rank
, 2002
"... This paper studies coalgebras from the perspective of finite observations. We introduce the notion of finite step equivalence and a corresponding category with finite step equivalencepreserving morphisms. This category always has a final object, which generalises the canonical model construction fr ..."
Abstract

Cited by 14 (8 self)
 Add to MetaCart
This paper studies coalgebras from the perspective of finite observations. We introduce the notion of finite step equivalence and a corresponding category with finite step equivalencepreserving morphisms. This category always has a final object, which generalises the canonical model construction from Kripke models to coalgebras. We then turn to logics whose formulae are invariant under finite step equivalence, which we call logics of rank . For these logics, we use topological methods and give a characterisation of compact logics and definable classes of models.