Results 1  10
of
12
Expressivity of coalgebraic modal logic: The limits and beyond
 IN FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, VOLUME 3441 OF LNCS
, 2005
"... Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, c ..."
Abstract

Cited by 39 (13 self)
 Add to MetaCart
Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, conversely, logically indistinguishable states are behaviorally equivalent depend on the existence of separating sets of predicate liftings for the signature functor at hand. Here, we provide a classification result for predicate liftings which leads to an easy criterion for the existence of such separating sets, and we give simple examples of functors that fail to admit expressive normal or monotone modal logics, respectively, or in fact an expressive (unary) modal logic at all. We then move on to polyadic modal logic, where modal operators may take more than one argument formula. We show that every accessible functor admits an expressive polyadic modal logic. Moreover, expressive polyadic modal logics are, unlike unary modal logics, compositional.
A Finite Model Construction For Coalgebraic Modal Logic
"... In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness result ..."
Abstract

Cited by 24 (16 self)
 Add to MetaCart
In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness results for coalgebraic modal logic, which we push further by establishing that every coalgebraic modal logic admits a complete axiomatization of rank 1; it also enables us to establish a generic decidability result and a first complexity bound. Examples covered by these general results include, besides standard HennessyMilner logic, graded modal logic and probabilistic modal logic.
Rank1 modal logics are coalgebraic
 IN STACS 2007, 24TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, PROCEEDINGS
, 2007
"... Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coal ..."
Abstract

Cited by 14 (11 self)
 Add to MetaCart
Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coalgebraic semantics. As a consequence, recent results on coalgebraic modal logic, in particular generic decision procedures and upper complexity bounds, become applicable to arbitrary rank 1 modal logics, without regard to their semantic status; we thus obtain purely syntactic versions of these results. As an extended example, we apply our framework to recently defined deontic logics.
Ultrafilter extensions for coalgebras
 In Algebra and Coalgebra in Computer Science, volume 3629 of LNCS
, 2005
"... Abstract. This paper studies finitary modal logics as specification languages for Setcoalgebras (coalgebras on the category of sets) using Stone duality. It is wellknown that Setcoalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general co ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
Abstract. This paper studies finitary modal logics as specification languages for Setcoalgebras (coalgebras on the category of sets) using Stone duality. It is wellknown that Setcoalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide with logical equivalence.
Exemplaric Expressivity of Modal Logics
, 2008
"... This paper investigates expressivity of modal logics for transition systems, multitransition systems, Markov chains, and Markov processes, as coalgebras of the powerset, finitely supported multiset, finitely supported distribution, and measure functor, respectively. Expressivity means that logically ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
This paper investigates expressivity of modal logics for transition systems, multitransition systems, Markov chains, and Markov processes, as coalgebras of the powerset, finitely supported multiset, finitely supported distribution, and measure functor, respectively. Expressivity means that logically indistinguishable states, satisfying the same formulas, are behaviourally indistinguishable. The investigation is based on the framework of dual adjunctions between spaces and logics and focuses on a crucial injectivity property. The approach is generic both in the choice of systems and modalities, and in the choice of a “base logic”. Most of these expressivity results are already known, but the applicability of the uniform setting of dual adjunctions to these particular examples is what constitutes the contribution of the paper.
Functorial coalgebraic logic: The case of manysorted varieties
 Electron. Notes Theor. Comput. Sci
"... Following earlier work, a modal logic for Tcoalgebras is a functor L on a suitable variety. Syntax and proof system of the logic are given by presentations of the functor. This paper makes two contributions. First, a previous result characterizing those functors that have presentations is generaliz ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Following earlier work, a modal logic for Tcoalgebras is a functor L on a suitable variety. Syntax and proof system of the logic are given by presentations of the functor. This paper makes two contributions. First, a previous result characterizing those functors that have presentations is generalized from endofunctors on onesorted varieties to functors between manysorted varieties. This yields an equational logic for the presheaf semantics of higherorder abstract syntax. As another application, we show how the move to functors between manysorted varieties allows to modularly combine syntax and proof systems of different logics. Second, we show how to associate to any setfunctor T a complete (finitary) logic L consisting of modal operators and Boolean connectives.
Completeness of the finitary Moss logic
 In Areces and Goldblatt [3
"... abstract. We give a sound and complete derivation system for the valid formulas in the finitary version of Moss ’ coalgebraic logic, for coalgebras of arbitrary type. ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
abstract. We give a sound and complete derivation system for the valid formulas in the finitary version of Moss ’ coalgebraic logic, for coalgebras of arbitrary type.
Equational Coalgebraic Logic
 MFPS
, 2009
"... Coalgebra develops a general theory of transition systems, parametric in a functor T; the functor T specifies the possible onestep behaviours of the system. A fundamental question in this area is how to obtain, for an arbitrary functor T, a logic for Tcoalgebras. We compare two existing proposals, ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Coalgebra develops a general theory of transition systems, parametric in a functor T; the functor T specifies the possible onestep behaviours of the system. A fundamental question in this area is how to obtain, for an arbitrary functor T, a logic for Tcoalgebras. We compare two existing proposals, Moss’s coalgebraic logic and the logic of all predicate liftings, by providing onestep translations between them, extending the results in [21] by making systematic use of Stone duality. Our main contribution then is a novel coalgebraic logic, which can be seen as an equational axiomatization of Moss’s logic. The three logics are equivalent for a natural but restricted class of functors. We give examples showing that the logics fall apart in general. Finally, we argue that the quest for a generic logic for Tcoalgebras is still open in the general case.
Coalgebras, Stone Duality, Modal Logic
, 2006
"... A brief outline of the topics of the course could be as follows. Coalgebras generalise transition systems. Modal logics are the natural logics for coalgebras. Stone duality provides the relationship between coalgebras and modal logic. Furthermore, some basic category theory is needed to understand c ..."
Abstract
 Add to MetaCart
A brief outline of the topics of the course could be as follows. Coalgebras generalise transition systems. Modal logics are the natural logics for coalgebras. Stone duality provides the relationship between coalgebras and modal logic. Furthermore, some basic category theory is needed to understand coalgebras as well as Stone duality. So we