Results 1  10
of
32
Abstract Data Type Systems
 Theoretical Computer Science
, 1997
"... HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract

Cited by 54 (10 self)
 Add to MetaCart
(Show Context)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Matching Power
 Proceedings of RTA’2001, Lecture Notes in Computer Science, Utrecht (The Netherlands
, 2001
"... www.loria.fr/{~cirstea,~ckirchne,~lliquori} Abstract. In this paper we give a simple and uniform presentation of the rewriting calculus, also called Rho Calculus. In addition to its simplicity, this formulation explicitly allows us to encode complex structures such as lists, sets, and objects. We pr ..."
Abstract

Cited by 35 (23 self)
 Add to MetaCart
(Show Context)
www.loria.fr/{~cirstea,~ckirchne,~lliquori} Abstract. In this paper we give a simple and uniform presentation of the rewriting calculus, also called Rho Calculus. In addition to its simplicity, this formulation explicitly allows us to encode complex structures such as lists, sets, and objects. We provide extensive examples of the calculus, and we focus on its ability to represent some object oriented calculi, namely the Lambda Calculus of Objects of Fisher, Honsell, and Mitchell, and the Object Calculus of Abadi and Cardelli. Furthermore, the calculus allows us to get object oriented constructions unreachable in other calculi. In summa, we intend to show that because of its matching ability, the Rho Calculus represents a lingua franca to naturally encode many paradigms of computations. This enlightens the capabilities of the rewriting calculus based language ELAN to be used as a logical as well as powerful semantical framework. 1
The Calculus of Algebraic Constructions
 In Proc. of the 10th Int. Conf. on Rewriting Techniques and Applications, LNCS 1631
, 1999
"... Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by hi ..."
Abstract

Cited by 33 (11 self)
 Add to MetaCart
(Show Context)
Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrite rules. In this paper, we prove that almost all CIC can be seen as a CAC, and that it can be further extended with nonstrictly positive types and inductiverecursive types together with nonfree constructors and patternmatching on defined symbols. 1.
Modularity of Strong Normalization and Confluence in the algebraiclambdacube
, 1994
"... In this paper we present the algebraiccube, an extension of Barendregt's cube with first and higherorder algebraic rewriting. We show that strong normalization is a modular property of all systems in the algebraiccube, provided that the firstorder rewrite rules are nonduplicating and th ..."
Abstract

Cited by 28 (7 self)
 Add to MetaCart
In this paper we present the algebraiccube, an extension of Barendregt's cube with first and higherorder algebraic rewriting. We show that strong normalization is a modular property of all systems in the algebraiccube, provided that the firstorder rewrite rules are nonduplicating and the higherorder rules satisfy the general schema of Jouannaud and Okada. This result is proven for the algebraic extension of the Calculus of Constructions, which contains all the systems of the algebraiccube. We also prove that local confluence is a modular property of all the systems in the algebraiccube, provided that the higherorder rules do not introduce critical pairs. This property and the strong normalization result imply the modularity of confluence. 1 Introduction Many different computational models have been developed and studied by theoretical computer scientists. One of the main motivations for the development This research was partially supported by ESPRIT Basic Research Act...
Rewriting calculus with(out) types
 Proceedings of the fourth workshop on rewriting logic and applications
, 2002
"... The last few years have seen the development of a new calculus which can be considered as an outcome of the last decade of various researches on (higher order) term rewriting systems, and lambda calculi. In the Rewriting Calculus (or Rho Calculus, ρCal), algebraic rules are considered as sophisticat ..."
Abstract

Cited by 24 (14 self)
 Add to MetaCart
(Show Context)
The last few years have seen the development of a new calculus which can be considered as an outcome of the last decade of various researches on (higher order) term rewriting systems, and lambda calculi. In the Rewriting Calculus (or Rho Calculus, ρCal), algebraic rules are considered as sophisticated forms of “lambda terms with patterns”, and rule applications as lambda applications with pattern matching facilities. The calculus can be customized to work modulo sophisticated theories, like commutativity, associativity, associativitycommutativity, etc. This allows us to encode complex structures such as list, sets, and more generally objects. The calculus can either be presented “à la Curry ” or “à la Church ” without sacrificing readability and without complicating too much the metatheory. Many static type systems can be easily pluggedin on top of the calculus in the spirit of the rich typeoriented literature. The Rewriting Calculus could represent a lingua franca to encode many paradigms of computations together with a formal basis used to build powerful theorem provers based on lambda calculus and efficient rewriting, and a step towards new proof engines based on the CurryHoward isomorphism. 1
Combining HigherOrder and FirstOrder Computation Using ρcalculus: Towards a Semantics of ELAN
 In Frontiers of Combining Systems 2
, 1999
"... The ρcalculus permits to express in a uniform and simple way firstorder rewriting, λcalculus and nondeterministic computations as well as their combination. In this paper, we present the main components of the ρcalculus and we give a full firstorder presentation of this rewriting calculus using ..."
Abstract

Cited by 23 (10 self)
 Add to MetaCart
The ρcalculus permits to express in a uniform and simple way firstorder rewriting, λcalculus and nondeterministic computations as well as their combination. In this paper, we present the main components of the ρcalculus and we give a full firstorder presentation of this rewriting calculus using an explicit substitution setting, called ρσ, that generalizes the λσcalculus. The basic properties of the nonexplicit and explicit substitution versions are presented. We then detail how to use the ρcalculus to give an operational semantics to the rewrite rules of the ELAN language. 1
Inductive types in the calculus of algebraic constructions
 FUNDAMENTA INFORMATICAE 65(12) (2005) 61–86 JOURNAL VERSION OF TLCA’03
, 2005
"... In a previous work, we proved that almost all of the Calculus of Inductive Constructions (CIC), the basis of the proof assistant Coq, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrit ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
In a previous work, we proved that almost all of the Calculus of Inductive Constructions (CIC), the basis of the proof assistant Coq, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrite rules. In this paper, we prove that CIC as a whole can be seen as a CAC, and that it can be extended with nonstrictly positive types and inductiverecursive types together with nonfree constructors and patternmatching on defined symbols.
Termination and confluence of higherorder rewrite systems
 In Proc. RTA ’00, volume 1833 of LNCS
, 2000
"... Abstract: In the last twenty years, several approaches to higherorder rewriting have been proposed, among which Klop’s Combinatory Rewrite Systems (CRSs), Nipkow’s Higherorder Rewrite Systems (HRSs) and Jouannaud and Okada’s higherorder algebraic specification languages, of which only the last on ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
(Show Context)
Abstract: In the last twenty years, several approaches to higherorder rewriting have been proposed, among which Klop’s Combinatory Rewrite Systems (CRSs), Nipkow’s Higherorder Rewrite Systems (HRSs) and Jouannaud and Okada’s higherorder algebraic specification languages, of which only the last one considers typed terms. The later approach has been extended by Jouannaud, Okada and the present author into Inductive Data Type Systems (IDTSs). In this paper, we extend IDTSs with the CRS higherorder patternmatching mechanism, resulting in simplytyped CRSs. Then, we show how the termination criterion developed for IDTSs with firstorder patternmatching, called the General Schema, can be extended so as to prove the strong normalization of IDTSs with higherorder patternmatching. Next, we compare the unified approach with HRSs. We first prove that the extended General Schema can also be applied to HRSs. Second, we show how Nipkow’s higherorder critical pair analysis technique for proving local confluence can be applied to IDTSs. 1
Modularity of Strong Normalization in the Algebraicλcube
, 1996
"... In this paper we present the algebraicλcube, an extension of Barendregt's λcube with first and higherorder algebraic rewriting. We show that strong normalization is a modular property of all systems in the algebraicλcube, provided that the firstorder rewrite rules are nonduplicating an ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
In this paper we present the algebraicλcube, an extension of Barendregt's λcube with first and higherorder algebraic rewriting. We show that strong normalization is a modular property of all systems in the algebraicλcube, provided that the firstorder rewrite rules are nonduplicating and the higherorder rules satisfy the general schema of Jouannaud and Okada. This result is proven for the algebraic extension of the Calculus of Constructions, which contains all the systems of the algebraicλcube. We also prove that local confluence is a modular property of all the systems in the algebraicλcube, provided that the higherorder rules do not introduce critical pairs. This property and the strong normalization result imply the modularity of confluence.
The simply typed rewriting calculus
 WRLA 2004
, 2004
"... The rewriting calculus is a rule construction and application framework. As such it embeds in a uniform way term rewriting and lambdacalculus. Since rule application is an explicit object of the calculus, it allows us also to handle the set of results explicitly. We present a simply typed version o ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
(Show Context)
The rewriting calculus is a rule construction and application framework. As such it embeds in a uniform way term rewriting and lambdacalculus. Since rule application is an explicit object of the calculus, it allows us also to handle the set of results explicitly. We present a simply typed version of the rewriting calculus. With a good choice of the type system, we show that the calculus is type preserving and terminating, i.e. verifies the subject reduction and strong normalization properties.