Results 1  10
of
65
Combinatory Reduction Systems: introduction and survey
 THEORETICAL COMPUTER SCIENCE
, 1993
"... Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simpl ..."
Abstract

Cited by 98 (9 self)
 Add to MetaCart
Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simplification rules for proof normalization. The original idea of CRSs is due to Aczel, who introduced a restricted class of CRSs and, under the assumption of orthogonality, proved confluence. Orthogonality means that the rules are nonambiguous (no overlap leading to a critical pair) and leftlinear (no global comparison of terms necessary). We introduce the class of orthogonal CRSs, illustrated with many examples, discuss its expressive power, and give an outline of a short proof of confluence. This proof is a direct generalization of Aczel's original proof, which is close to the wellknown confluence proof for λcalculus by Tait and MartinLof. There is a wellknown connection between the para...
Abstract Data Type Systems
 Theoretical Computer Science
, 1997
"... HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract

Cited by 54 (10 self)
 Add to MetaCart
(Show Context)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Inductively Defined Types in the Calculus of Constructions
 IN: PROCEEDINGS OF THE FIFTH CONFERENCE ON THE MATHEMATICAL FOUNDATIONS OF PROGRAMMING SEMANTICS. SPRINGER VERLAG LNCS
, 1989
"... We define the notion of an inductively defined type in the Calculus of Constructions and show how inductively defined types can be represented by closed types. We show that all primitive recursive functionals over these inductively defined types are also representable. This generalizes work by Böhm ..."
Abstract

Cited by 48 (3 self)
 Add to MetaCart
(Show Context)
We define the notion of an inductively defined type in the Calculus of Constructions and show how inductively defined types can be represented by closed types. We show that all primitive recursive functionals over these inductively defined types are also representable. This generalizes work by Böhm & Berarducci on synthesis of functions on term algebras in the secondorder polymorphiccalculus (F2). We give several applications of this generalization, including a representation of F2programs in F3, along with a definition of functions reify, reflect, and eval for F2 in F3. We also show how to define induction over inductively defined types and sketch some results that show that the extension of the Calculus of Construction by induction principles does not alter the set of functions in its computational fragment, F!. This is because a proof by induction can be realized by primitive recursion, which is already de nable in F!.
On Girard’s “Candidats de Réductibilité
 Logic and Computer Science
, 1990
"... Abstract: We attempt to elucidate the conditions required on Girard’s candidates of reducibility (in French, “candidats de reductibilité”) in order to establish certain properties of various typed lambda calculi, such as strong normalization and ChurchRosser property. We present two generalizations ..."
Abstract

Cited by 42 (5 self)
 Add to MetaCart
(Show Context)
Abstract: We attempt to elucidate the conditions required on Girard’s candidates of reducibility (in French, “candidats de reductibilité”) in order to establish certain properties of various typed lambda calculi, such as strong normalization and ChurchRosser property. We present two generalizations of the candidates of reducibility, an untyped version in the line of Tait and Mitchell, and a typed version which is an adaptation of Girard’s original method. As an application of this general result, we give two proofs of strong normalization for the secondorder polymorphic lambda calculus under ⌘reduction (and thus underreduction). We present two sets of conditions for the typed version of the candidates. The first set consists of conditions similar to those used by Stenlund (basically the typed version of Tait’s conditions), and the second set consists of Girard’s original conditions. We also compare these conditions, and prove that Girard’s conditions are stronger than Tait’s conditions. We give a new proof of the ChurchRosser theorem for bothreduction and ⌘reduction, using the modified version of Girard’s method. We also compare various proofs that have appeared in the literature (see section 11). We conclude by sketching the extension of the above results to Girard’s higherorder polymorphic calculus F!, and in appendix 1, to F! with product types. i 1
Matching Power
 Proceedings of RTA’2001, Lecture Notes in Computer Science, Utrecht (The Netherlands
, 2001
"... www.loria.fr/{~cirstea,~ckirchne,~lliquori} Abstract. In this paper we give a simple and uniform presentation of the rewriting calculus, also called Rho Calculus. In addition to its simplicity, this formulation explicitly allows us to encode complex structures such as lists, sets, and objects. We pr ..."
Abstract

Cited by 35 (23 self)
 Add to MetaCart
(Show Context)
www.loria.fr/{~cirstea,~ckirchne,~lliquori} Abstract. In this paper we give a simple and uniform presentation of the rewriting calculus, also called Rho Calculus. In addition to its simplicity, this formulation explicitly allows us to encode complex structures such as lists, sets, and objects. We provide extensive examples of the calculus, and we focus on its ability to represent some object oriented calculi, namely the Lambda Calculus of Objects of Fisher, Honsell, and Mitchell, and the Object Calculus of Abadi and Cardelli. Furthermore, the calculus allows us to get object oriented constructions unreachable in other calculi. In summa, we intend to show that because of its matching ability, the Rho Calculus represents a lingua franca to naturally encode many paradigms of computations. This enlightens the capabilities of the rewriting calculus based language ELAN to be used as a logical as well as powerful semantical framework. 1
The Calculus of Algebraic Constructions
 In Proc. of the 10th Int. Conf. on Rewriting Techniques and Applications, LNCS 1631
, 1999
"... Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by hi ..."
Abstract

Cited by 33 (11 self)
 Add to MetaCart
(Show Context)
Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrite rules. In this paper, we prove that almost all CIC can be seen as a CAC, and that it can be further extended with nonstrictly positive types and inductiverecursive types together with nonfree constructors and patternmatching on defined symbols. 1.
Nominal rewriting
 Information and Computation
"... Nominal rewriting is based on the observation that if we add support for alphaequivalence to firstorder syntax using the nominalset approach, then systems with binding, including higherorder reduction schemes such as lambdacalculus betareduction, can be smoothly represented. Nominal rewriting ma ..."
Abstract

Cited by 32 (13 self)
 Add to MetaCart
(Show Context)
Nominal rewriting is based on the observation that if we add support for alphaequivalence to firstorder syntax using the nominalset approach, then systems with binding, including higherorder reduction schemes such as lambdacalculus betareduction, can be smoothly represented. Nominal rewriting maintains a strict distinction between variables of the objectlanguage (atoms) and of the metalanguage (variables or unknowns). Atoms may be bound by a special abstraction operation, but variables cannot be bound, giving the framework a pronounced firstorder character, since substitution of terms for variables is not captureavoiding. We show how good properties of firstorder rewriting survive the extension, by giving an efficient rewriting algorithm, a critical pair lemma, and a confluence theorem
Adding algebraic rewriting to the untyped lambda calculus
 Information and Computation
, 1992
"... We investigate the system obtained by adding an algebraic rewriting system R to an untyped lambda calculus in which terms are formed using the function symbols from R as constants. On certain classes of terms, called here "stable", we prove that the resulting calculus is confluent if R is ..."
Abstract

Cited by 31 (0 self)
 Add to MetaCart
(Show Context)
We investigate the system obtained by adding an algebraic rewriting system R to an untyped lambda calculus in which terms are formed using the function symbols from R as constants. On certain classes of terms, called here "stable", we prove that the resulting calculus is confluent if R is confluent, and terminating if R is terminating. The termination result has the corresponding theorems for several typed calculi as corollaries. The proof of the confluence result suggests a general method for proving confluence of typed β reduction plus rewriting; we sketch the application to the polymorphic lambda calculus.
Modularity of Strong Normalization and Confluence in the algebraiclambdacube
, 1994
"... In this paper we present the algebraiccube, an extension of Barendregt's cube with first and higherorder algebraic rewriting. We show that strong normalization is a modular property of all systems in the algebraiccube, provided that the firstorder rewrite rules are nonduplicating and th ..."
Abstract

Cited by 28 (7 self)
 Add to MetaCart
In this paper we present the algebraiccube, an extension of Barendregt's cube with first and higherorder algebraic rewriting. We show that strong normalization is a modular property of all systems in the algebraiccube, provided that the firstorder rewrite rules are nonduplicating and the higherorder rules satisfy the general schema of Jouannaud and Okada. This result is proven for the algebraic extension of the Calculus of Constructions, which contains all the systems of the algebraiccube. We also prove that local confluence is a modular property of all the systems in the algebraiccube, provided that the higherorder rules do not introduce critical pairs. This property and the strong normalization result imply the modularity of confluence. 1 Introduction Many different computational models have been developed and studied by theoretical computer scientists. One of the main motivations for the development This research was partially supported by ESPRIT Basic Research Act...