Results 1 
4 of
4
Equivalence in Functional Languages with Effects
, 1991
"... Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying ..."
Abstract

Cited by 112 (13 self)
 Add to MetaCart
Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying many of the usual laws. Combined with other recent work this provides evidence that expressive, mathematically clean programming languages are indeed possible. 1. Overview Real programs have effectscreating new structures, examining and modifying existing structures, altering flow of control, etc. Such facilities are important not only for optimization, but also for communication, clarity, and simplicity in programming. Thus it is important to be able to reason both informally and formally about programs with effects, and not to sweep effects either to the side or under the store parameter rug. Recent work of Talcott, Mason, Felleisen, and Moggi establishes a mathematical foundation for...
A Variable Typed Logic of Effects
 Information and Computation
, 1993
"... In this paper we introduce a variable typed logic of effects inspired by the variable type systems of Feferman for purely functional languages. VTLoE (Variable Typed Logic of Effects) is introduced in two stages. The first stage is the firstorder theory of individuals built on assertions of equalit ..."
Abstract

Cited by 48 (12 self)
 Add to MetaCart
In this paper we introduce a variable typed logic of effects inspired by the variable type systems of Feferman for purely functional languages. VTLoE (Variable Typed Logic of Effects) is introduced in two stages. The first stage is the firstorder theory of individuals built on assertions of equality (operational equivalence `a la Plotkin), and contextual assertions. The second stage extends the logic to include classes and class membership. The logic we present provides an expressive language for defining and studying properties of programs including program equivalences, in a uniform framework. The logic combines the features and benefits of equational calculi as well as program and specification logics. In addition to the usual firstorder formula constructions, we add contextual assertions. Contextual assertions generalize Hoare's triples in that they can be nested, used as assumptions, and their free variables may be quantified. They are similar in spirit to program modalities in ...
A First Order Logic of Effects
 Theoretical Computer Science
, 1996
"... In this paper we describe some of our progress towards an operational implementation of a modern programming logic. The logic is inspired by the variable type systems of Feferman, and is designed for reasoning about imperative functional programs. The logic goes well beyond traditional programming l ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
In this paper we describe some of our progress towards an operational implementation of a modern programming logic. The logic is inspired by the variable type systems of Feferman, and is designed for reasoning about imperative functional programs. The logic goes well beyond traditional programming logics, such as Hoare's logic and Dynamic logic in its expressibility, yet is less problematic to encode into higher order logics. The main focus of the paper is too present an axiomatization of the base first order theory. 1 Introduction VTLoE [34, 23, 35, 37, 24] is a logic for reasoning about imperative functional programs, inspired by the variable type systems of Feferman. These systems are two sorted theories of operations and classes initially developed for the formalization of constructive mathematics [12, 13] and later applied to the study of purely functional languages [14, 15]. VTLoE builds upon recent advances in the semantics of languages with effects [16, 19, 28, 32, 33] and go...
Copyright C
"... Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying ..."
Abstract
 Add to MetaCart
Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying many of the usual laws. Combined with other recent work this provides evidence that expressive, mathematically clean programming languages are indeed possible. 1. Overview Real programs have effectscreating new structures, examining and modifying existing structures, altering flow of control, etc. Such facilities are important not only for optimization, but also for communication, clarity, and simplicity in programming. Thus it is important to be able to reason both informally and formally about programs with effects, and not to sweep effects either to the side or under the store parameter rug. Recent work of Talcott, Mason, Felleisen, and Moggi establishes a mathematical foundation for...