Results 1 - 10
of
211
Face Recognition: A Literature Survey
, 2000
"... ... This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into ..."
Abstract
-
Cited by 1398 (21 self)
- Add to MetaCart
... This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition,
Robust face recognition via sparse representation
- IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract
-
Cited by 936 (40 self)
- Add to MetaCart
We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by ℓ 1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as Eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly, by exploiting the fact that these errors are often sparse w.r.t. to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm, and corroborate the above claims.
Learning a similarity metric discriminatively, with application to face verification
- In Proc. of Computer Vision and Pattern Recognition Conference
, 2005
"... ..."
(Show Context)
Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition
- in Proc. IEEE Int. Conf. Computer Vision
"... For years, researchers in face recognition area have been representing and recognizing faces based on subspace discriminant analysis or statistical learning. Nevertheless, these approaches are always suffering from the generalizability problem. This paper proposes a novel non-statistics based face r ..."
Abstract
-
Cited by 150 (11 self)
- Add to MetaCart
(Show Context)
For years, researchers in face recognition area have been representing and recognizing faces based on subspace discriminant analysis or statistical learning. Nevertheless, these approaches are always suffering from the generalizability problem. This paper proposes a novel non-statistics based face representation approach, Local Gabor Binary Pattern Histogram Sequence (LGBPHS), in which training procedure is unnecessary to construct the face model, so that the generalizability problem is naturally avoided. In this approach, a face image is modeled as a “histogram sequence ” by concatenating the histograms of all the local regions of all the local Gabor magnitude binary pattern maps. For recognition, histogram intersection is used to measure the similarity of different LGBPHSes and the nearest neighborhood is exploited for final classification. Additionally, we have further proposed to assign different weights for each histogram piece when measuring two LGBPHSes. Our experimental results on AR and FERET face database show the validity of the proposed approach especially for partially occluded face images, and more impressively, we have achieved the best result on FERET face database. 1.
Dynamics of Facial Expression: Recognition of Facial Actions and Their Temporal Segments from Face Profile Image Sequences
- IEEE Trans. Systems, Man, and Cybernetics, Part B
, 2006
"... Abstract—Automatic analysis of human facial expression is a challenging problem with many applications. Most of the existing automated systems for facial expression analysis attempt to recognize a few prototypic emotional expressions, such as anger and happiness. Instead of representing another appr ..."
Abstract
-
Cited by 111 (19 self)
- Add to MetaCart
(Show Context)
Abstract—Automatic analysis of human facial expression is a challenging problem with many applications. Most of the existing automated systems for facial expression analysis attempt to recognize a few prototypic emotional expressions, such as anger and happiness. Instead of representing another approach to machine analysis of prototypic facial expressions of emotion, the method presented in this paper attempts to handle a large range of human facial behavior by recognizing facial muscle actions that produce expressions. Virtually all of the existing vision systems for facial muscle action detection deal only with frontal-view face images and cannot handle temporal dynamics of facial actions. In this paper, we present a system for automatic recognition of facial action units (AUs) and their temporal models from long, profile-view face image sequences. We exploit particle filtering to track 15 facial points in an input face-profile sequence, and we introduce facial-action-dynamics recognition from continuous video input using temporal rules. The algorithm performs both automatic segmentation of an input video into facial expressions pictured and recognition of temporal segments (i.e., onset, apex, offset) of 27 AUs occurring alone or in a combination in the input face-profile video. A recognition rate of 87 % is achieved. Index Terms—Computer vision, facial action units, facial expression analysis, facial expression dynamics analysis, particle filtering, rule-based reasoning, spatial reasoning, temporal reasoning. I.
Face recognition from a single image per person: A survey
- PATTERN RECOGNITION
, 2006
"... One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower costs for storing and processing them. Unfortunately, many reported face recognition techniques ..."
Abstract
-
Cited by 108 (6 self)
- Add to MetaCart
(Show Context)
One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower costs for storing and processing them. Unfortunately, many reported face recognition techniques rely heavily on the size and representative of training set, and most of them will suffer serious performance drop or even fail to work if only one training sample per person is available to the systems. This situation is called “one sample per person ” problem: given a stored database of faces, the goal is to identify a person from the database later in time in any different and unpredictable poses, lighting, etc from just one image. Such a task is very challenging for most current algorithms due to the extremely limited representative of training sample. Numerous techniques have been developed to attack this problem, and the purpose of this paper is to categorize and evaluate these algorithms. The prominent algorithms are described and critically analyzed. Relevant issues such as data collection, the influence of the small sample size, and system evaluation are discussed, and several promising directions for future research are also proposed in this paper.
Multiple nose region matching for 3D face recognition under varying facial expression
- IEEE Transaction on Pattern Analysis and Machine Intelligence 28
, 2006
"... Abstract—An algorithm is proposed for 3D face recognition in the presence of varied facial expressions. It is based on combining the match scores from matching multiple overlapping regions around the nose. Experimental results are presented using the largest database employed to date in 3D face reco ..."
Abstract
-
Cited by 92 (6 self)
- Add to MetaCart
(Show Context)
Abstract—An algorithm is proposed for 3D face recognition in the presence of varied facial expressions. It is based on combining the match scores from matching multiple overlapping regions around the nose. Experimental results are presented using the largest database employed to date in 3D face recognition studies, over 4,000 scans of 449 subjects. Results show substantial improvement over matching the shape of a single larger frontal face region. This is the first approach to use multiple overlapping regions around the nose to handle the problem of expression variation. Index Terms—Biometrics, face recognition, three-dimensional face, facial expression. 1
Face Recognition in Hyperspectral Images
- IEEE Trans. Pattern Analysis and Machine Intelligence
, 2003
"... Abstract—Hyperspectral cameras provide useful discriminants for human face recognition that cannot be obtained by other imaging methods. We examine the utility of using near-infrared hyperspectral images for the recognition of faces over a database of 200 subjects. The hyperspectral images were coll ..."
Abstract
-
Cited by 67 (0 self)
- Add to MetaCart
(Show Context)
Abstract—Hyperspectral cameras provide useful discriminants for human face recognition that cannot be obtained by other imaging methods. We examine the utility of using near-infrared hyperspectral images for the recognition of faces over a database of 200 subjects. The hyperspectral images were collected using a CCD camera equipped with a liquid crystal tunable filter to provide 31 bands over the near-infrared (0.7 m-1.0 m). Spectral measurements over the near-infrared allow the sensing of subsurface tissue structure which is significantly different from person to person, but relatively stable over time. The local spectral properties of human tissue are nearly invariant to face orientation and expression which allows hyperspectral discriminants to be used for recognition over a large range of poses and expressions. We describe a face recognition algorithm that exploits spectral measurements for multiple facial tissue types. We demonstrate experimentally that this algorithm can be used to recognize faces over time in the presence of changes in facial pose and expression. Index Terms—Face recognition, hyperspectral. æ
Face Verification across Age Progression
- in Proc. IEEE Conf. Computer Vision and Pattern Recognition
, 2005
"... Abstract—Human faces undergo considerable amounts of variations with aging. While face recognition systems have been proven to be sensitive to factors such as illumination and pose, their sensitivity to facial aging effects is yet to be studied. How does age progression affect the similarity between ..."
Abstract
-
Cited by 62 (6 self)
- Add to MetaCart
(Show Context)
Abstract—Human faces undergo considerable amounts of variations with aging. While face recognition systems have been proven to be sensitive to factors such as illumination and pose, their sensitivity to facial aging effects is yet to be studied. How does age progression affect the similarity between a pair of face images of an individual? What is the confidence associated with establishing the identity between a pair of age separated face images? In this paper, we develop a Bayesian age difference classifier that classifies face images of individuals based on age differences and performs face verification across age progression. Further, we study the similarity of faces across age progression. Since age separated face images invariably differ in illumination and pose, we propose preprocessing methods for minimizing such variations. Experimental results using a database comprising of pairs of face images that were retrieved from the passports of 465 individuals are presented. The verification system for faces separated by as many as nine years, attains an equal error rate of 8.5%. Index Terms—Age progression, face recognition, face verification, probabilistic eigenspaces, similarity measure. I.
A Comparative Study of Local Matching Approach for Face Recognition
, 2007
"... In contrast to holistic methods, local matching methods extract facial features from different levels of locality and quantify them precisely. To determine how they can be best used for face recognition, we conducted a comprehensive comparative study at each step of the local matching process. The c ..."
Abstract
-
Cited by 61 (1 self)
- Add to MetaCart
(Show Context)
In contrast to holistic methods, local matching methods extract facial features from different levels of locality and quantify them precisely. To determine how they can be best used for face recognition, we conducted a comprehensive comparative study at each step of the local matching process. The conclusions from our experiments include: (1) additional evidence that Gabor features are effective local feature representations and are robust to illumination changes; (2) discrimination based only on a small portion of the face area is surprisingly good; (3) the configuration of facial components does contain rich discriminating information and comparing corresponding local regions utilizes shape features more effectively than comparing corresponding facial components; (4) spatial multiresolution analysis leads to better classification performance; (5) combining local regions with Borda Count classifier combination method alleviates the curse of dimensionality. We implemented a complete face recognition system by integrating the best option of each step. Without training, illumination compensation and without any parameter tuning, it achieves superior performance on every category of the FERET test: near perfect classification accuracy (99.5%) on pictures taken on the same day regardless of indoor illumination variations; and significantly better than any other reported performance on pictures taken several days to more than a year apart. The most significant experiments were repeated on the AR database, with similar results.