Results 1 
7 of
7
Elliptic Curves And Primality Proving
 Math. Comp
, 1993
"... The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. ..."
Abstract

Cited by 162 (22 self)
 Add to MetaCart
The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm.
Primality testing using elliptic curves
 Journal of the ACM
, 1999
"... Abstract. We present a primality proving algorithm—a probabilistic primality test that produces short certificates of primality on prime inputs. We prove that the test runs in expected polynomial time for all but a vanishingly small fraction of the primes. As a corollary, we obtain an algorithm for ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
Abstract. We present a primality proving algorithm—a probabilistic primality test that produces short certificates of primality on prime inputs. We prove that the test runs in expected polynomial time for all but a vanishingly small fraction of the primes. As a corollary, we obtain an algorithm for generating large certified primes with distribution statistically close to uniform. Under the conjecture that the gap between consecutive primes is bounded by some polynomial in their size, the test is shown to run in expected polynomial time for all primes, yielding a Las Vegas primality test. Our test is based on a new methodology for applying group theory to the problem of prime certification, and the application of this methodology using groups generated by elliptic curves over finite fields. We note that our methodology and methods have been subsequently used and improved upon, most notably in the primality proving algorithm of Adleman and Huang using hyperelliptic curves and
Implementation Of The AtkinGoldwasserKilian Primality Testing Algorithm
 Rapport de Recherche 911, INRIA, Octobre
, 1988
"... . We describe a primality testing algorithm, due essentially to Atkin, that uses elliptic curves over finite fields and the theory of complex multiplication. In particular, we explain how the use of class fields and genus fields can speed up certain phases of the algorithm. We sketch the actual impl ..."
Abstract

Cited by 9 (7 self)
 Add to MetaCart
. We describe a primality testing algorithm, due essentially to Atkin, that uses elliptic curves over finite fields and the theory of complex multiplication. In particular, we explain how the use of class fields and genus fields can speed up certain phases of the algorithm. We sketch the actual implementation of this test and its use on testing large primes, the records being two numbers of more than 550 decimal digits. Finally, we give a precise answer to the question of the reliability of our computations, providing a certificate of primality for a prime number. IMPLEMENTATION DU TEST DE PRIMALITE D' ATKIN, GOLDWASSER, ET KILIAN R'esum'e. Nous d'ecrivons un algorithme de primalit'e, principalement du `a Atkin, qui utilise les propri'et'es des courbes elliptiques sur les corps finis et la th'eorie de la multiplication complexe. En particulier, nous expliquons comment l'utilisation du corps de classe et du corps de genre permet d'acc'el'erer les calculs. Nous esquissons l'impl'ementati...
The Lucas–Pratt primality tree
 Math. Comp
"... Abstract. In 1876, E. Lucas showed that a quick proof of primality for a prime p could be attained through the prime factorization of p − 1 and a primitive root for p. V. Pratt’s proof that PRIMES is in NP, done via Lucas’s theorem, showed that a certificate of primality for a prime p could be obtai ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. In 1876, E. Lucas showed that a quick proof of primality for a prime p could be attained through the prime factorization of p − 1 and a primitive root for p. V. Pratt’s proof that PRIMES is in NP, done via Lucas’s theorem, showed that a certificate of primality for a prime p could be obtained in O(log 2 p) modular multiplications with integers at most p. We show that for all constants C ∈ R, the number of modular multiplications necessary to obtain this certificate is greater than C log p for a set of primes p with relative asymptotic density 1. 1.
Atkin's test: news from the front
 In Advances in Cryptology
, 1990
"... We make an attempt to compare the speed of eeme primality testing algorithms for certifying loodigit prime numbers. 1. Introduction. The ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We make an attempt to compare the speed of eeme primality testing algorithms for certifying loodigit prime numbers. 1. Introduction. The
PRIME CHAINS AND PRATT TREES
"... ABSTRACT. We study the distribution of prime chains, which are sequences p1,..., pk of primes for which pj+1 ≡ 1 (mod pj) for each j. We first give conditional upper bounds on the length of Cunningham chains, chains with pj+1 = 2pj +1 for each j. We give estimates for P (x), the number of chains wit ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
ABSTRACT. We study the distribution of prime chains, which are sequences p1,..., pk of primes for which pj+1 ≡ 1 (mod pj) for each j. We first give conditional upper bounds on the length of Cunningham chains, chains with pj+1 = 2pj +1 for each j. We give estimates for P (x), the number of chains with pk � x (k variable), and P (x; p), the number of chains with p1 = p and pk � px. The majority of the paper concerns the distribution of H(p), the length of the longest chain with pk = p, which is also the height of the Pratt tree for p. We show H(p) � c log log p and H(p) � (log p) 1−c′ for almost all p, with c, c ′ explicit positive constants. We can take, for any ε> 0, c = e − ε assuming the ElliottHalberstam conjecture. A stochastic model of the Pratt tree is introduced and analyzed. The model suggests that for most p � x, H(p) stays very close to e log log x. 1.
DETERMINISTIC ELLIPTIC CURVE PRIMALITY PROVING FOR A SPECIAL SEQUENCE OF NUMBERS
"... Abstract. We give a deterministic algorithm that very quickly proves the primality or compositeness of the integers N in a certain sequence, using an elliptic curve E/Q with complex multiplication by the ring of integers of Q ( √ −7). The algorithm uses O(log N) arithmetic operations in the ring Z/ ..."
Abstract
 Add to MetaCart
Abstract. We give a deterministic algorithm that very quickly proves the primality or compositeness of the integers N in a certain sequence, using an elliptic curve E/Q with complex multiplication by the ring of integers of Q ( √ −7). The algorithm uses O(log N) arithmetic operations in the ring Z/NZ, implying a bit complexity that is quasiquadratic in log N. Notably, neither of the classical “N − 1 ” or “N + 1 ” primality tests apply to the integers in our sequence. We discuss how this algorithm may be applied, in combination with sieving techniques, to efficiently search for very large primes. This has allowed us to prove the primality of several integers with more than 100,000 decimal digits, the largest of which has more than a million bits in its binary representation. We believe that this is the largest proven prime N for which no significant partial factorization of N − 1 or N + 1 is known. 1.