Results 1  10
of
464
Logic Programming with Focusing Proofs in Linear Logic
 Journal of Logic and Computation
, 1992
"... The deep symmetry of Linear Logic [18] makes it suitable for providing abstract models of computation, free from implementation details which are, by nature, oriented and non symmetrical. I propose here one such model, in the area of Logic Programming, where the basic computational principle is C ..."
Abstract

Cited by 417 (8 self)
 Add to MetaCart
The deep symmetry of Linear Logic [18] makes it suitable for providing abstract models of computation, free from implementation details which are, by nature, oriented and non symmetrical. I propose here one such model, in the area of Logic Programming, where the basic computational principle is Computation = Proof search.
Theorems for free!
 FUNCTIONAL PROGRAMMING LANGUAGES AND COMPUTER ARCHITECTURE
, 1989
"... From the type of a polymorphic function we can derive a theorem that it satisfies. Every function of the same type satisfies the same theorem. This provides a free source of useful theorems, courtesy of Reynolds' abstraction theorem for the polymorphic lambda calculus. ..."
Abstract

Cited by 380 (8 self)
 Add to MetaCart
(Show Context)
From the type of a polymorphic function we can derive a theorem that it satisfies. Every function of the same type satisfies the same theorem. This provides a free source of useful theorems, courtesy of Reynolds' abstraction theorem for the polymorphic lambda calculus.
Anytime, anywhere: modal logics for mobile ambients
 In POPL ’00: Proceedings of the 27th ACM SIGPLANSIGACT symposium on Principles of programming languages
, 2000
"... The Ambient Calculus is a process calculus where processes may reside within a hierarchy of locations and modify it. The purpose of the calculus is to study mobility, which is seen as the change of spatial configurations over time. In order to describe properties of mobile computations we devise a m ..."
Abstract

Cited by 187 (13 self)
 Add to MetaCart
(Show Context)
The Ambient Calculus is a process calculus where processes may reside within a hierarchy of locations and modify it. The purpose of the calculus is to study mobility, which is seen as the change of spatial configurations over time. In order to describe properties of mobile computations we devise a modal logic that can talk about space as well as time, and that has the Ambient Calculus as a model. 1
Higherorder logic programming
 HANDBOOK OF LOGIC IN AI AND LOGIC PROGRAMMING, VOLUME 5: LOGIC PROGRAMMING. OXFORD (1998
"... ..."
Linear Types Can Change the World!
 PROGRAMMING CONCEPTS AND METHODS
, 1990
"... The linear logic of J.Y. Girard suggests a new type system for functional languages, one which supports operations that "change the world". Values belonging to a linear type must be used exactly once: like the world, they cannot be duplicated or destroyed. Such values require no refere ..."
Abstract

Cited by 148 (9 self)
 Add to MetaCart
The linear logic of J.Y. Girard suggests a new type system for functional languages, one which supports operations that "change the world". Values belonging to a linear type must be used exactly once: like the world, they cannot be duplicated or destroyed. Such values require no reference counting or garbage collection, and safely admit destructive array update. Linear types extend Schmidt's notion of single threading; provide an alternative to Hudak and Bloss' update analysis; and offer a practical complement to Lafont and Holmström's elegant linear languages.
A Logic of Argumentation for Reasoning under Uncertainty.
 Computational Intelligence
, 1995
"... We present the syntax and proof theory of a logic of argumentation, LA. We also outline the development of a category theoretic semantics for LA. LA is the core of a proof theoretic model for reasoning under uncertainty. In this logic, propositions are labelled with a representation of the arguments ..."
Abstract

Cited by 145 (8 self)
 Add to MetaCart
(Show Context)
We present the syntax and proof theory of a logic of argumentation, LA. We also outline the development of a category theoretic semantics for LA. LA is the core of a proof theoretic model for reasoning under uncertainty. In this logic, propositions are labelled with a representation of the arguments which support their validity. Arguments may then be aggregated to collect more information about the potential validity of the propositions of interest. We make the notion of aggregation primitive to the logic, and then define strength mappings from sets of arguments to one of a number of possible dictionaries. This provides a uniform framework which incorporates a number of numerical and symbolic techniques for assigning subjective confidences to propositions on the basis of their supporting arguments. These aggregation techniques are also described, with examples. Key words: Uncertain reasoning, epistemic probability, argumentation, nonclassical logics, nonmonotonic reasoning 1. Introd...
Formal Parametric Polymorphism
 THEORETICAL COMPUTER SCIENCE
, 1993
"... A polymorphic function is parametric if its behavior does not depend on the type at which it is instantiated. Starting with Reynolds's work, the study of parametricity is typically semantic. In this paper, we develop a syntactic approach to parametricity, and a formal system that embodies this ..."
Abstract

Cited by 140 (6 self)
 Add to MetaCart
A polymorphic function is parametric if its behavior does not depend on the type at which it is instantiated. Starting with Reynolds's work, the study of parametricity is typically semantic. In this paper, we develop a syntactic approach to parametricity, and a formal system that embodies this approach, called system R . Girard's system F deals with terms and types; R is an extension of F that deals also with relations between types. In R , it is possible to derive theorems about functions from their types, or "theorems for free", as Wadler calls them. An easy "theorem for free" asserts that the type "(X)XBool contains only constant functions; this is not provable in F. There are many harder and more substantial examples. Various metatheorems can also be obtained, such as a syntactic version of Reynolds's abstraction theorem.
Inheritance As Implicit Coercion
 Information and Computation
, 1991
"... . We present a method for providing semantic interpretations for languages with a type system featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. ..."
Abstract

Cited by 131 (4 self)
 Add to MetaCart
(Show Context)
. We present a method for providing semantic interpretations for languages with a type system featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. Our goal is to interpret inheritances in Fun via coercion functions which are definable in the target of the translation. Existing techniques in the theory of semantic domains can be then used to interpret the extended polymorphic lambda calculus, thus providing many models for the original language. This technique makes it possible to model a rich type discipline which includes parametric polymorphism and recursive types as well as inheritance. A central difficulty in providing interpretations for explicit type disciplines featuring inheritance in the sense discussed in this paper arises from the fact that programs can typecheck in more than one way. Since interpretations follow the type...
Is there a use for linear logic?
, 1991
"... Past attempts to apply Girard's linear logic have either had a clear relation to the theory (Lafont, Holmstrom, Abramsky) or a clear practical value (Guzm'an and Hudak, Wadler), but not both. This paper defines a sequence of languages based on linear logic that span the gap between theory ..."
Abstract

Cited by 98 (7 self)
 Add to MetaCart
Past attempts to apply Girard's linear logic have either had a clear relation to the theory (Lafont, Holmstrom, Abramsky) or a clear practical value (Guzm'an and Hudak, Wadler), but not both. This paper defines a sequence of languages based on linear logic that span the gap between theory and practice. Type reconstruction in a linear type system can derive information about sharing. An approach to linear type reconstruction based on use types is presented. Applications to the array update problem are considered.
Monadic Presentations of Lambda Terms Using Generalized Inductive Types
 In Computer Science Logic
, 1999
"... . We present a denition of untyped terms using a heterogeneous datatype, i.e. an inductively dened operator. This operator can be extended to a Kleisli triple, which is a concise way to verify the substitution laws for calculus. We also observe that repetitions in the denition of the monad as wel ..."
Abstract

Cited by 95 (18 self)
 Add to MetaCart
(Show Context)
. We present a denition of untyped terms using a heterogeneous datatype, i.e. an inductively dened operator. This operator can be extended to a Kleisli triple, which is a concise way to verify the substitution laws for calculus. We also observe that repetitions in the denition of the monad as well as in the proofs can be avoided by using wellfounded recursion and induction instead of structural induction. We extend the construction to the simply typed calculus using dependent types, and show that this is an instance of a generalization of Kleisli triples. The proofs for the untyped case have been checked using the LEGO system. Keywords. Type Theory, inductive types, calculus, category theory. 1 Introduction The metatheory of substitution for calculi is interesting maybe because it seems intuitively obvious but becomes quite intricate if we take a closer look. [Hue92] states seven formal properties of substitution which are then used to prove a general substitution theor...