Results 1  10
of
997
A Framework for Defining Logics
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1993
"... The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of ariti ..."
Abstract

Cited by 795 (42 self)
 Add to MetaCart
The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of arities. The treatment of rules and proofs focuses on his notion of a judgement. Logics are represented in LF via a new principle, the judgements as types principle, whereby each judgement is identified with the type of its proofs. This allows for a smooth treatment of discharge and variable occurrence conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higherorder judgements and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logicindependent tools such as proof editors and proof checkers can be constructed.
The mathematics of sentence structure
 AMERICAN MATHEMATICAL MONTHLY
, 1958
"... ..."
(Show Context)
Uniform proofs as a foundation for logic programming
 ANNALS OF PURE AND APPLIED LOGIC
, 1991
"... A prooftheoretic characterization of logical languages that form suitable bases for Prologlike programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its ..."
Abstract

Cited by 428 (122 self)
 Add to MetaCart
A prooftheoretic characterization of logical languages that form suitable bases for Prologlike programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its operational meaning, provided by interpreting logical connectives as simple and fixed search instructions. The operational semantics is formalized by the identification of a class of cutfree sequent proofs called uniform proofs. A uniform proof is one that can be found by a goaldirected search that respects the interpretation of the logical connectives as search instructions. The concept of a uniform proof is used to define the notion of an abstract logic programming language, and it is shown that firstorder and higherorder Horn clauses with classical provability are examples of such a language. Horn clauses are then generalized to hereditary Harrop formulas and it is shown that firstorder and higherorder versions of this new class of formulas are also abstract logic programming languages if the inference rules are those of either intuitionistic or minimal logic. The programming language significance of the various generalizations to firstorder Horn clauses is briefly discussed.
HigherOrder Abstract Syntax
"... We describe motivation, design, use, and implementation of higherorder abstract syntax as a central representation for programs, formulas, rules, and other syntactic objects in program manipulation and other formal systems where matching and substitution or syntax incorporates name binding informat ..."
Abstract

Cited by 357 (17 self)
 Add to MetaCart
We describe motivation, design, use, and implementation of higherorder abstract syntax as a central representation for programs, formulas, rules, and other syntactic objects in program manipulation and other formal systems where matching and substitution or syntax incorporates name binding information in a uniform and language generic way. Thus it acts as a powerful link integrating diverse tools in such formal environments. We have implemented higherorder abstract syntax, a supporting matching and unification algorithm, and some clients in Common
Logic Programming in a Fragment of Intuitionistic Linear Logic
, 1994
"... When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ ..."
Abstract

Cited by 340 (44 self)
 Add to MetaCart
(Show Context)
When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ ∪{D}. Thus during the bottomup search for a cutfree proof contexts, represented as the lefthand side of intuitionistic sequents, grow as stacks. While such an intuitionistic notion of context provides for elegant specifications of many computations, contexts can be made more expressive and flexible if they are based on linear logic. After presenting two equivalent formulations of a fragment of linear logic, we show that the fragment has a goaldirected interpretation, thereby partially justifying calling it a logic programming language. Logic programs based on the intuitionistic theory of hereditary Harrop formulas can be modularly embedded into this linear logic setting. Programming examples taken from theorem proving, natural language parsing, and data base programming are presented: each example requires a linear, rather than intuitionistic, notion of context to be modeled adequately. An interpreter for this logic programming language must address the problem of splitting contexts; that is, when attempting to prove a multiplicative conjunction (tensor), say G1 ⊗ G2, fromthe context ∆, the latter must be split into disjoint contexts ∆1 and ∆2 for which G1 follows from ∆1 and G2 follows from ∆2. Since there is an exponential number of such splits, it is important to delay the choice of a split as much as possible. A mechanism for the lazy splitting of contexts is presented based on viewing proof search as a process that takes a context, consumes part of it, and returns the rest (to be consumed elsewhere). In addition, we use collections of Kripke interpretations indexed by a commutative monoid to provide models for this logic programming language and show that logic programs admit a canonical model.
A logic programming language with lambdaabstraction, function variables, and simple unification
 Extensions of Logic Programming. Springer Lecture Notes in Artificial Intelligence
, 1990
"... A meta programming language must be able to represent and manipulate such syntactic structures as programs, formulas, types, and proofs. A common characteristic of all these structures is that they involve notions of abstractions, scope, bound and free variables, substitution instances, and equality ..."
Abstract

Cited by 314 (27 self)
 Add to MetaCart
(Show Context)
A meta programming language must be able to represent and manipulate such syntactic structures as programs, formulas, types, and proofs. A common characteristic of all these structures is that they involve notions of abstractions, scope, bound and free variables, substitution instances, and equality up to alphabetic changes of bound variables.
A new approach to abstract syntax with variable binding
 Formal Aspects of Computing
, 2002
"... Abstract. The permutation model of set theory with atoms (FMsets), devised by Fraenkel and Mostowski in the 1930s, supports notions of ‘nameabstraction ’ and ‘fresh name ’ that provide a new way to represent, compute with, and reason about the syntax of formal systems involving variablebinding op ..."
Abstract

Cited by 287 (63 self)
 Add to MetaCart
(Show Context)
Abstract. The permutation model of set theory with atoms (FMsets), devised by Fraenkel and Mostowski in the 1930s, supports notions of ‘nameabstraction ’ and ‘fresh name ’ that provide a new way to represent, compute with, and reason about the syntax of formal systems involving variablebinding operations. Inductively defined FMsets involving the nameabstraction set former (together with Cartesian product and disjoint union) can correctly encode syntax modulo renaming of bound variables. In this way, the standard theory of algebraic data types can be extended to encompass signatures involving binding operators. In particular, there is an associated notion of structural recursion for defining syntaxmanipulating functions (such as capture avoiding substitution, set of free variables, etc.) and a notion of proof by structural induction, both of which remain pleasingly close to informal practice in computer science. 1.
HiLog: A foundation for higherorder logic programming
 JOURNAL OF LOGIC PROGRAMMING
, 1993
"... We describe a novel logic, called HiLog, and show that it provides a more suitable basis for logic programming than does traditional predicate logic. HiLog has a higherorder syntax and allows arbitrary terms to appear in places where predicates, functions and atomic formulas occur in predicate calc ..."
Abstract

Cited by 252 (42 self)
 Add to MetaCart
(Show Context)
We describe a novel logic, called HiLog, and show that it provides a more suitable basis for logic programming than does traditional predicate logic. HiLog has a higherorder syntax and allows arbitrary terms to appear in places where predicates, functions and atomic formulas occur in predicate calculus. But its semantics is firstorder and admits a sound and complete proof procedure. Applications of HiLog are discussed, including DCG grammars, higherorder and modular logic programming, and deductive databases.
A New Approach to Abstract Syntax Involving Binders
 In 14th Annual Symposium on Logic in Computer Science
, 1999
"... Syntax Involving Binders Murdoch Gabbay Cambridge University DPMMS Cambridge CB2 1SB, UK M.J.Gabbay@cantab.com Andrew Pitts Cambridge University Computer Laboratory Cambridge CB2 3QG, UK ap@cl.cam.ac.uk Abstract The FraenkelMostowski permutation model of set theory with atoms (FMsets) ..."
Abstract

Cited by 177 (20 self)
 Add to MetaCart
(Show Context)
Syntax Involving Binders Murdoch Gabbay Cambridge University DPMMS Cambridge CB2 1SB, UK M.J.Gabbay@cantab.com Andrew Pitts Cambridge University Computer Laboratory Cambridge CB2 3QG, UK ap@cl.cam.ac.uk Abstract The FraenkelMostowski permutation model of set theory with atoms (FMsets) can serve as the semantic basis of metalogics for specifying and reasoning about formal systems involving name binding, ffconversion, capture avoiding substitution, and so on. We show that in FMset theory one can express statements quantifying over `fresh' names and we use this to give a novel settheoretic interpretation of name abstraction. Inductively defined FMsets involving this nameabstraction set former (together with cartesian product and disjoint union) can correctly encode objectlevel syntax modulo ffconversion. In this way, the standard theory of algebraic data types can be extended to encompass signatures involving binding operators. In particular, there is an associated n...