Results 11  20
of
229
A Type System for Bounded Space and Functional inPlace Update
, 2000
"... We show how linear typing can be used to obtain functional programs which modify heapallocated data structures in place. We present this both as a "design pattern" for writing Ccode in a functional style and as a compilation process from linearly typed firstorder functional programs into malloc() ..."
Abstract

Cited by 84 (14 self)
 Add to MetaCart
We show how linear typing can be used to obtain functional programs which modify heapallocated data structures in place. We present this both as a "design pattern" for writing Ccode in a functional style and as a compilation process from linearly typed firstorder functional programs into malloc()free C code. The main technical result is the correctness of this compilation. The crucial innovation over previous linear typing schemes consists of the introduction of a resource type # which controls the number of constructor symbols such as cons in recursive definitions and ensures linear space while restricting expressive power surprisingly little. While the space e#ciency brought about by the new typing scheme and the compilation into C can also be realised by with stateoftheart optimising compilers for functional languages such as Ocaml [16], the present method provides guaranteed bounds on heap space which will be of use for applications such as languages for embedd...
Types for Dyadic Interaction
, 1993
"... We formulate a typed formalism for concurrency where types denote freely composable structure of dyadic interaction in the symmetric scheme. The resulting calculus is a typed reconstruction of name passing process calculi. Systems with both the explicit and implicit typing disciplines, where types f ..."
Abstract

Cited by 83 (10 self)
 Add to MetaCart
We formulate a typed formalism for concurrency where types denote freely composable structure of dyadic interaction in the symmetric scheme. The resulting calculus is a typed reconstruction of name passing process calculi. Systems with both the explicit and implicit typing disciplines, where types form a simple hierarchy of types, are presented, which are proved to be in accordance with each other. A typed variant of bisimilarity is formulated and it is shown that typed fiequality has a clean embedding in the bisimilarity. Name reference structure induced by the simple hierarchy of types is studied, which fully characterises the typable terms in the set of untyped terms. It turns out that the name reference structure results in the deadlockfree property for a subset of terms with a certain regular structure, showing behavioural significance of the simple type discipline. 1 Introduction This is a preliminary study of types for concurrency. Types here denote freely composable structur...
A concurrent logical framework I: Judgments and properties
, 2003
"... The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous con ..."
Abstract

Cited by 73 (25 self)
 Add to MetaCart
The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives# of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #, & and #.
A Term Calculus for Intuitionistic Linear Logic
, 1993
"... . In this paper we consider the problem of deriving a term assignment system for Girard's Intuitionistic Linear Logic for both the sequent calculus and natural deduction proof systems. Our system differs from previous calculi (e.g. that of Abramsky [1]) and has two important properties which they la ..."
Abstract

Cited by 72 (11 self)
 Add to MetaCart
. In this paper we consider the problem of deriving a term assignment system for Girard's Intuitionistic Linear Logic for both the sequent calculus and natural deduction proof systems. Our system differs from previous calculi (e.g. that of Abramsky [1]) and has two important properties which they lack. These are the substitution property (the set of valid deductions is closed under substitution) and subject reduction (reduction on terms is welltyped). We also consider term reduction arising from cutelimination in the sequent calculus and normalisation in natural deduction. We explore the relationship between these and consider their computational content. 1 Intuitionistic Linear Logic Girard's Intuitionistic Linear Logic [3] is a refinement of Intuitionistic Logic where formulae must be used exactly once. Given this restriction the familiar logical connectives become divided into multiplicative and additive versions. Within this paper, we shall only consider the multiplicatives. Int...
Graph Types For Monadic Mobile Processes
 University of Edinburgh
, 1996
"... . While types for name passing calculi have been studied extensively in the context of sorting of polyadic ßcalculus [5, 34, 9, 28, 32, 19, 33, 10, 17], the same type abstraction is not possible in the monadic setting, which was left as an open issue by Milner [21]. We solve this problem with an ex ..."
Abstract

Cited by 60 (7 self)
 Add to MetaCart
. While types for name passing calculi have been studied extensively in the context of sorting of polyadic ßcalculus [5, 34, 9, 28, 32, 19, 33, 10, 17], the same type abstraction is not possible in the monadic setting, which was left as an open issue by Milner [21]. We solve this problem with an extension of sorting which captures dynamic aspects of process behaviour in a simple way. Equationally this results in the full abstraction of the standard encoding of polyadic ßcalculus into the monadic one: the sorted polyadic ßterms are equated by a basic behavioural equality in the polyadic calculus if and only if their encodings are equated in a basic behavioural equality in the typed monadic calculus. This is the first result of this kind we know of in the context of the encoding of polyadic name passing, which is a typical example of translation of highlevel communication structures into ß calculus. The construction is general enough to be extendable to encodings of calculi with mo...
From ProofNets to Interaction Nets
 Advances in Linear Logic
, 1994
"... Introduction If we consider the interpretation of proofs as programs, say in intuitionistic logic, the question of equality between proofs becomes crucial: The syntax introduces meaningless distinctions whereas the (denotational) semantics makes excessive identifications. This question does not hav ..."
Abstract

Cited by 59 (1 self)
 Add to MetaCart
Introduction If we consider the interpretation of proofs as programs, say in intuitionistic logic, the question of equality between proofs becomes crucial: The syntax introduces meaningless distinctions whereas the (denotational) semantics makes excessive identifications. This question does not have a simple answer in general, but it leads to the notion of proofnet, which is one of the main novelties of linear logic. This has been already explained in [Gir87] and [GLT89]. The notion of interaction net introduced in [Laf90] comes from an attempt to implement the reduction of these proofnets. It happens to be a simple model of parallel computation, and so it can be presented independently of linear logic, as in [Laf94]. However, we think that it is also useful to relate the exact origin of interaction nets, especially for readers with some knowledge in linear logic. We take this opportunity to give a survey of the theory of proofnets, including a new proof of the sequentializ
Typed Memory Management via Static Capabilities
 ACM Transactions on Programming Languages and Systems
, 2000
"... Machine We have described the type constructor language of CL and the typing rules for the main termlevel constructs. In fact, the previous section contains all of the ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year. 20 D. Walker, K. Crary, and G. Morriset ..."
Abstract

Cited by 54 (5 self)
 Add to MetaCart
Machine We have described the type constructor language of CL and the typing rules for the main termlevel constructs. In fact, the previous section contains all of the ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year. 20 D. Walker, K. Crary, and G. Morrisett #; #;# # h at r : # # # # f : Type #; ## # ; #{f :# f , x 1 :# 1 , . . . , xn :# n}; C # e # # f = #[# # ].(C, # 1 , . . . , #n ) # 0 at r f, x 1 , . . . , xn ## Dom(#) # #; #;# # fix f[# # ](C, x 1 :# 1 , . . . , xn :# n ).e at r : # f (hfix) #; #;# # v i : # i (for 1 # i # n) # # r : Rgn #; #;# # #v 1 , . . . , vn # at r : ## 1 , . . . , #n # at r (htuple) #; #;# # h at r : # # # # # # = # : Type #; #;# # h at r : # (heq) #; #;# # v : # #; #;# # x : # (#(x) = #) (vvar) #; #;# # i : int (vint) #; #;# # v : #[#:#, # # ].(C, # 1 , . . . , #n ) # 0 at r # # c : # #; #;# # v[c] : (#[# # ].(C, # 1 , . . . , #n ) # 0)[c/#] at r (vtype) #; #;# # v : #[# # C ## , # # ].(C # , # 1 , . . . , #n ) # 0 at r # # C # C ## #; #;# # v[C] : (#[# # ].(C # , # 1 , . . . , #n ) # 0)[C/#] at r (vsub) #; #;# # v : # # # # # # = # : Type #; #;# # v : # (veq) Fig. 6. Capability static semantics: Heap and word values. information programmers or compilers require to write typesafe programs in CL. However, in order to prove a type soundness result in the style of Wright and Felleisen [Wright and Felleisen 1994], we must be able to type check programs at every step during their evaluation. In this section, we give the static semantics of the runtime values that are not normally manipulated by programmers, but are nevertheless necessary to prove our soundness result. At first, the formal definition ...
A Brief Guide to Linear Logic
, 1993
"... An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation. ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation.
Linear Logic Without Boxes
, 1992
"... Girard's original definition of proof nets for linear logic involves boxes. The box is the unit for erasing and duplicating fragments of proof nets. It imposes synchronization, limits sharing, and impedes a completely local view of computation. Here we describe an implementation of proof nets withou ..."
Abstract

Cited by 53 (0 self)
 Add to MetaCart
Girard's original definition of proof nets for linear logic involves boxes. The box is the unit for erasing and duplicating fragments of proof nets. It imposes synchronization, limits sharing, and impedes a completely local view of computation. Here we describe an implementation of proof nets without boxes. Proof nets are translated into graphs of the sort used in optimal calculus implementations; computation is performed by simple graph rewriting. This graph implementation helps in understanding optimal reductions in the calculus and in the various programming languages inspired by linear logic. 1 Beyond the calculus The calculus is not entirely explicit about the operations of erasing and duplicating arguments. These operations are important both in the theory of the  calculus and in its implementations, yet they are typically treated somewhat informally, implicitly. The proof nets of linear logic [1] provide a refinement of the calculus where these operations become explici...