Results 1 
3 of
3
On Higher Order Recursive Program Schemes
 In: Proc. of the 19 th International Colloquium on Trees in Algebra and Programming, CAAP'94
"... . We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the calculus) in righthand sides of function and quantifier definitions. A study of several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes ..."
Abstract

Cited by 20 (16 self)
 Add to MetaCart
. We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the calculus) in righthand sides of function and quantifier definitions. A study of several kinds of similarity of redexes makes it possible to lift properties of (first order) Recursive Program Schemes to the higher order case. The main result is the decidability of weak normalization in HRPSs, which immediately implies that HRPSs do not have full computational power. We analyze the structural properties of HRPSs and introduce several kinds of persistent expression reduction systems (PERSs) that enjoy similar properties. Finally, we design an optimal evaluation procedure for PERSs. 1 Introduction Higher Order Recursive Program Schemes (HRPSs) are recursive definitions of functions, predicates, and quantifiers, considered as rewriting systems. Similar definitions are used when one extends a theory by introducing new symbols [16]. 9aA , (øa(A)=a)A and 9!aA , 9aA 8a8b(A (b=a)A ) a = b) a...
The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems
 In: Proc. of the 3 rd International Conference on Logical Foundations of Computer Science, LFCS'94, A. Nerode and Yu.V. Matiyasevich, eds., Springer LNCS
, 1994
"... We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normaliza ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
We consider reductions in Orthogonal Expression Reduction Systems (OERS), that is, Orthogonal Term Rewriting Systems with bound variables and substitutions, as in the calculus. We design a strategy that for any given term t constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. The Conservation Theorem for OERSs follows easily from the properties of the strategy. We develop a method for computing the length of a longest reduction starting from a strongly normalizable term. We study properties of pure substitutions and several kinds of similarity of redexes. We apply these results to construct an algorithm for computing lengths of longest reductions in strongly persistent OERSs that does not require actual transformation of the input term. As a corollary, we have an algorithm for computing lengths of longest developments in OERSs. 1 Introduction A strategy is perpetual if, given a term t, it constructs an infinit...
Perpetuality and Strong Normalization in Orthogonal Term Rewriting Systems
 In: Proc. of 11 th Symposium on Theoretical Aspects of Computer Science, STACS'94
, 1994
"... . We design a strategy that for any given term t in an Orthogonal Term Rewriting System (OTRS) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. For some classes of OTRSs the strategy is easily computable. We develop a metho ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
. We design a strategy that for any given term t in an Orthogonal Term Rewriting System (OTRS) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. For some classes of OTRSs the strategy is easily computable. We develop a method for finding the least upper bound of lengths of reductions starting from a strongly normalizable term. We give also some applications of our results. 1 Introduction It is shown in O'Donnell [12] that the innermost strategy is perpetual for orthogonal term rewriting systems (OTRSs). That is, contraction of innermost redexes gives an infinite reduction of a given term whenever such a reduction exists. In fact, a strategy that only contracts redexes that do not erase any other redex is perpetual. Moreover, one can even reduce redexes whose erased arguments are strongly normalizable (Klop [10]). For the lambdacalculus, a more subtle perpetual strategy was invented in Barendregt et al. [1]. H...