Results 1  10
of
38
The price of stability for network design with fair cost allocation
 In Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS
, 2004
"... Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite differ ..."
Abstract

Cited by 204 (26 self)
 Add to MetaCart
Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite different from the centrally enforced optimum. We study the quality of the best Nash equilibrium, and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash equilibrium solution has a natural meaning of stability in this context — it is the optimal solution that can be proposed from which no user will defect. We consider the price of stability for network design with respect to one of the most widelystudied protocols for network cost allocation, in which the cost of each edge is divided equally between users whose connections make use of it; this fairdivision scheme can be derived from the Shapley value, and has a number of basic economic motivations. We show that the price of stability for network design with respect to this fair cost allocation is O(log k), where k is the number of users, and that a good Nash equilibrium can be achieved via bestresponse dynamics in which users iteratively defect from a starting solution. This establishes that the fair cost allocation protocol is in fact a useful mechanism for inducing strategic behavior to form nearoptimal equilibria. We discuss connections to the class of potential games defined by Monderer and Shapley, and extend our results to cases in which users are seeking to balance network design costs with latencies in the constructed network, with stronger results when the network has only delays and no construction costs. We also present bounds on the convergence time of bestresponse dynamics, and discuss extensions to a weighted game.
Selfish Routing and the Price of Anarchy
, 2005
"... Abstract Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure o ..."
Abstract

Cited by 170 (11 self)
 Add to MetaCart
Abstract Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price of anarchy of selfish routing. We also describe related results on bounding the worstpossible severity of a phenomenon called Braess's Paradox, and on three techniques for reducing the price of anarchy of selfish routing. This survey concentrates on the contributions of the author's PhD thesis, but also discusses several more recent results in the area.
Intrinsic Robustness of the Price of Anarchy
"... The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium ..."
Abstract

Cited by 55 (11 self)
 Add to MetaCart
The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium. This drawback motivates the search for inefficiency bounds that apply more generally to weaker notions of equilibria, such as mixed Nash and correlated equilibria; or to sequences of outcomes generated by natural experimentation strategies, such as successive best responses or simultaneous regretminimization. We prove a general and fundamental connection between the price of anarchy and its seemingly stronger relatives in classes of games with a sum objective. First, we identify a “canonical sufficient condition ” for an upper bound of the POA for pure Nash equilibria, which we call a smoothness argument. Second, we show that every bound derived via a smoothness argument extends automatically, with no quantitative degradation in the bound, to mixed Nash equilibria, correlated equilibria, and the average objective function value of regretminimizing players (or “price of total anarchy”). Smoothness arguments also have automatic implications for the inefficiency of approximate and BayesianNash equilibria and, under mild additional assumptions, for bicriteria bounds and for polynomiallength bestresponse sequences. We also identify classes of games — most notably, congestion games with cost functions restricted to an arbitrary fixed set — that are tight, in the sense that smoothness arguments are guaranteed to produce an optimal worstcase upper bound on the POA, even for the smallest set of interest (pure Nash equilibria). Byproducts of our proof of this result include the first tight bounds on the POA in congestion games with nonpolynomial cost functions, and the first
Strong price of anarchy
 In SODA
, 2007
"... A strong equilibrium (Aumann 1959) is a pure Nash equilibrium which is resilient to deviations by coalitions. We define the strong price of anarchy to be the ratio of the worst case strong equilibrium to the social optimum. In contrast to the traditional price of anarchy, which quantifies the loss i ..."
Abstract

Cited by 54 (9 self)
 Add to MetaCart
A strong equilibrium (Aumann 1959) is a pure Nash equilibrium which is resilient to deviations by coalitions. We define the strong price of anarchy to be the ratio of the worst case strong equilibrium to the social optimum. In contrast to the traditional price of anarchy, which quantifies the loss incurred due to both selfishness and lack of coordination, the strong price of anarchy isolates the loss originated from selfishness from that obtained due to lack of coordination. We study the strong price of anarchy in two settings, one of job scheduling and the other of network creation. In the job scheduling game we show that for unrelated machines the strong price of anarchy can be bounded as a function of the number of machines and the size of the coalition. For the network creation game we show that the strong price of anarchy is at most 2. In both cases we show that a strong equilibrium always exists, except for a well defined subset of network creation games. ∗ This work was supported in part by the IST Programme of the European Community, under the PASCAL
Network Design with Weighted Players
 In Proceedings of the 18th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA
, 2006
"... We consider a model of gametheoretic network design initially studied by Anshelevich et al. [2], where selfish players select paths in a network to minimize their cost, which is prescribed by Shapley cost shares. If all players are identical, the cost share incurred by a player for an edge in its p ..."
Abstract

Cited by 44 (6 self)
 Add to MetaCart
We consider a model of gametheoretic network design initially studied by Anshelevich et al. [2], where selfish players select paths in a network to minimize their cost, which is prescribed by Shapley cost shares. If all players are identical, the cost share incurred by a player for an edge in its path is the fixed cost of the edge divided by the number of players using it. In this special case, Anshelevich et al. [2] proved that purestrategy Nash equilibria always exist and that the price of stability—the ratio in costs of a minimumcost Nash equilibrium and an optimal solution—is Θ(log k), where k is the number of players. Little was known about the existence of equilibria or the price of stability in the general weighted version of the game. Here, each player i has aweightwi≥1, and its cost share of an edge in its path
Coordination mechanisms
 PROCEEDINGS OF THE 31ST INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES AND PROGRAMMING, IN: LECTURE NOTES IN COMPUTER SCIENCE
, 2004
"... We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish and noncolluding agents. The quality of a coordination mechanism is measured by its price of anarchy—the worstcase performance of a Nash equilibrium over the (centrally controlled) soc ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish and noncolluding agents. The quality of a coordination mechanism is measured by its price of anarchy—the worstcase performance of a Nash equilibrium over the (centrally controlled) social optimum. We give upper and lower bounds for the price of anarchy for selfish task allocation and congestion games.
Regret minimization and the price of total anarchy
 In STOC ’08: Proceedings of the fortieth annual ACM symposium on Theory of computing
, 2007
"... We propose weakening the assumption made when studying the price of anarchy: Rather than assume that selfinterested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret ..."
Abstract

Cited by 38 (7 self)
 Add to MetaCart
We propose weakening the assumption made when studying the price of anarchy: Rather than assume that selfinterested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret minimization can be done via simple, efficient algorithms even in many settings where the number of action choices for each player is exponential in the natural parameters of the problem. We prove that despite our weakened assumptions, in several broad classes of games, this “price of total anarchy ” matches the Nash price of anarchy, even though play may never converge to Nash equilibrium. In contrast to the price of anarchy and the recently introduced price of sinking [15], which require all players to behave in a prescribed manner, we show that the price of total anarchy is in many cases resilient to the presence of Byzantine players, about whom we make no assumptions. Finally, because the price of total anarchy is an upper bound on the price of anarchy even in mixed strategies, for some games our results yield as corollaries previously unknown bounds on the price of anarchy in mixed strategies. 1
On the price of stability for designing undirected networks with fair cost allocations
 IN PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP
, 2006
"... In this paper we address the open problem of bounding the price of stability for network design with fair cost allocation for undirected graphs posed in [1]. We consider the case where there is an agent in every vertex. We show that the price of stability is O(log log n). We prove this by defining a ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
In this paper we address the open problem of bounding the price of stability for network design with fair cost allocation for undirected graphs posed in [1]. We consider the case where there is an agent in every vertex. We show that the price of stability is O(log log n). We prove this by defining a particular improving dynamics in a related graph. This proof technique may have other applications and is of independent interest.
Convergence and Approximation in Potential Games
, 2006
"... We study the speed of convergence to approximately optimal states in two classes of potential games. We provide bounds in terms of the number of rounds, where a round consists of a sequence of movements, with each player appearing at least once in each round. We model the sequential interaction betw ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
We study the speed of convergence to approximately optimal states in two classes of potential games. We provide bounds in terms of the number of rounds, where a round consists of a sequence of movements, with each player appearing at least once in each round. We model the sequential interaction between players by a bestresponse walk in the state graph, where every transition in the walk corresponds to a best response of a player. Our goal is to bound the social value of the states at the end of such walks. In this paper, we focus on two classes of potential games: selfish routing games, and cut games (or party affiliation games [7]).
Tight bounds for selfish and greedy load balancing
 ICALP 2006. LNCS
, 2006
"... Abstract. We study the load balancing problem in the context of a set of clients each wishing to run a job on a server selected among a subset of permissible servers for the particular client. We consider two different scenarios. In selfish load balancing, each client is selfish in the sense that it ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
Abstract. We study the load balancing problem in the context of a set of clients each wishing to run a job on a server selected among a subset of permissible servers for the particular client. We consider two different scenarios. In selfish load balancing, each client is selfish in the sense that it selects to run its job to the server among its permissible servers having the smallest latency given the assignments of the jobs of other clients to servers. In online load balancing, clients appear online and, when a client appears, it has to make an irrevocable decision and assign its job to one of its permissible servers. Here, we assume that the clients aim to optimize some global criterion but in an online fashion. A natural local optimization criterion that can be used by each client when making its decision is to assign its job to that server that gives the minimum increase of the global objective. This gives rise to greedy online solutions. The aim of this paper is to determine how much the quality of load balancing is affected by selfishness and greediness. We characterize almost completely the impact of selfishness and greediness in load balancing by presenting new and improved, tight or almost tight bounds on the price of anarchy and price of stability of selfish load balancing as well as on the competitiveness of the greedy algorithm for online load balancing when the objective is to minimize the total latency of all clients on servers with linear latency functions. 1