Results 1 
1 of
1
NonCommutative Arithmetic Circuits: Depth Reduction and Size Lower Bounds
 Theoretical Computer Science
"... We investigate the phenomenon of depthreduction in commutativeand noncommutative arithmetic circuits. We prove that in the commutative setting, uniform semiunbounded arithmetic circuits of logarithmic depth are as powerful as uniform arithmetic circuits of polynomial degree (and unrestricted dept ..."
Abstract

Cited by 28 (10 self)
 Add to MetaCart
We investigate the phenomenon of depthreduction in commutativeand noncommutative arithmetic circuits. We prove that in the commutative setting, uniform semiunbounded arithmetic circuits of logarithmic depth are as powerful as uniform arithmetic circuits of polynomial degree (and unrestricted depth); earlier proofs did not work in the uniform setting. This also provides a unified proof of the circuit characterizations of the class LOGCFL and its counting variant #LOGCFL. We show that AC 1 has no more power than arithmetic circuits of polynomial size and degree n O(log log n) (improving the trivial bound of n O(logn) ). Connections are drawn between TC 1 and arithmetic circuits of polynomial size and degree. Then we consider noncommutative computation. We show that over the algebra (\Sigma ; max, concat), arithmetic circuits of polynomial size and polynomial degree can be reduced to O(log 2 n) depth (and even to O(log n) depth if unboundedfanin gates are allowed) . This...