Results 11  20
of
78
A closed model structure for ncategories, internal Hom, nstacks and generalized SeifertVan Kampen
, 1997
"... ..."
Pasting Schemes for the Monoidal Biclosed Structure on
, 1995
"... Using the theory of pasting presentations, developed in chapter 2, I give a detailed description of the tensor product on !categories, which extends Gray's tensor product on 2categories and which is closely related to BrownHiggins's tensor product on !groupoids. Immediate consequences are a gen ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
Using the theory of pasting presentations, developed in chapter 2, I give a detailed description of the tensor product on !categories, which extends Gray's tensor product on 2categories and which is closely related to BrownHiggins's tensor product on !groupoids. Immediate consequences are a general and uniform definition of higher dimensional lax natural transformations, and a nice and transparent description of the corresponding internal homs. Further consequences will be in the development of a theory for weak ncategories, since both tensor products and lax structures are crucial in this. Contents 1 Introduction 3 2 Cubes and cubical sets 5 2.1 Cubes combinatorially : : : : : : : : : : : : : : : : : : : : : : : : 5 2.2 A model category for cubes : : : : : : : : : : : : : : : : : : : : : 6 2.3 Generating the model category for cubes : : : : : : : : : : : : : : 7 2.4 Cubical sets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.5 Duality : : : : : : : : : : : : : ...
Quillen Closed Model Structures for Sheaves
, 1995
"... In this chapter I give a general procedure of transferring closed model structures along adjoint functor pairs. As applications I derive from a global closed model structure on the category of simplicial sheaves closed model structures on the category of sheaves of 2groupoids, the category of bisim ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
In this chapter I give a general procedure of transferring closed model structures along adjoint functor pairs. As applications I derive from a global closed model structure on the category of simplicial sheaves closed model structures on the category of sheaves of 2groupoids, the category of bisimplicial sheaves and the category of simplicial sheaves of groupoids. Subsequently, the homotopy theories of these categories are related to the homotopy theory of simplicial sheaves. 1 Introduction There are two ways of trying to generalize the well known closed model structure on the category of simplicial sets to the category of simplicial objects in a Grothendieck topos. One way is to concentrate on the local aspect, and to use the Kanfibrations as a starting point. In [14] Heller showed that for simplicial presheaves there is a local (there called right) closed model structure. In [2] K. Brown showed that for a topological space X the category of "locally fibrant" sheaves of spectra on ...
Convex hull realizations of the multiplihedra
, 2007
"... Abstract. We present a simple algorithm for determining the extremal points in Euclidean space whose convex hull is the n th polytope in the sequence known as the multiplihedra. This answers the open question of whether the multiplihedra could be realized as convex polytopes. Contents ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
Abstract. We present a simple algorithm for determining the extremal points in Euclidean space whose convex hull is the n th polytope in the sequence known as the multiplihedra. This answers the open question of whether the multiplihedra could be realized as convex polytopes. Contents
Higher fundamental functors for simplicial sets, Cahiers Topologie Géom
 Diff. Catég
"... Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form the cartesian closed subcategory of simple presheaves in!Smp, the topos of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how ..."
Abstract

Cited by 11 (8 self)
 Add to MetaCart
Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form the cartesian closed subcategory of simple presheaves in!Smp, the topos of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how this homotopy theory can be extended to the topos itself,!Smp. As a crucial advantage, the fundamental groupoid Π1:!Smp = Gpd is left adjoint to a natural functor M1: Gpd =!Smp, the symmetric nerve of a groupoid, and preserves all colimits – a strong van Kampen property. Similar results hold in all higher dimensions. Analogously, a notion of (nonreversible) directed homotopy can be developed in the ordinary simplicial topos Smp, with applications to image analysis as in [G3]. We have now a homotopy ncategory functor ↑Πn: Smp = nCat, left adjoint to a nerve Nn = nCat(↑Πn(∆[n]), –). This construction can be applied to various presheaf categories; the basic requirements seem to be: finite products of representables are finitely presentable and there is a representable 'standard interval'.
Pasting In Multiple Categories
 Theory Appl. Categ
, 1998
"... . In the literature there are several kinds of concrete and abstract cell complexes representing composition in ncategories, !categories or 1categories, and the slightly more general partial !categories. Some examples are parity complexes, pasting schemes and directed complexes. In this paper we ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
. In the literature there are several kinds of concrete and abstract cell complexes representing composition in ncategories, !categories or 1categories, and the slightly more general partial !categories. Some examples are parity complexes, pasting schemes and directed complexes. In this paper we give an axiomatic treatment: that is to say, we study the class of `!complexes' which consists of all complexes representing partial !categories. We show that !complexes can be given geometric structures and that in most important examples they become wellbehaved CW complexes; we characterise !complexes by conditions on their cells; we show that a product of !complexes is again an !complex; and we describe some products in detail. 1. Introduction In this paper we consider pasting diagrams representing compositions in multiple categories. To be specific, the multiple categories concerned are ncategories and their infinitedimensional analogues, which are called !categories or 1cat...
Computads for Finitary Monads on Globular Sets
, 1998
"... . A finitary monad A on the category of globular sets provides basic algebraic operations from which more involved `pasting' operations can be derived. To makes this rigorous, we define Acomputads and construct a monad on the category of Acomputads whose algebras are Aalgebras; an action of the n ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
. A finitary monad A on the category of globular sets provides basic algebraic operations from which more involved `pasting' operations can be derived. To makes this rigorous, we define Acomputads and construct a monad on the category of Acomputads whose algebras are Aalgebras; an action of the new monad encapsulates the pasting operations. When A is the monad whose algebras are ncategories, an Acomputad is an ncomputad in the sense of R.Street. When A is associated to a higher operad (in the sense of the author) , we obtain pasting in weak ncategories. This is intended as a first step towards proving the equivalence of the various definitions of weak ncategory now in the literature. Introduction This work arose as a reflection on the foundation of higher dimensional category theory. One of the main ingredients of any proposed definition of weak ncategory is the shape of diagrams (pasting scheme) we accept to be composable. In a globular approach [3] each kcell has a source ...
Investigating The Algebraic Structure of Dihomotopy Types
, 2001
"... This presentation is the sequel of a paper published in GETCO'00 proceedings where a research program to construct an appropriate algebraic setting for the study of deformations of higher dimensional automata was sketched. This paper focuses precisely on detailing some of its aspects. The main idea ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
This presentation is the sequel of a paper published in GETCO'00 proceedings where a research program to construct an appropriate algebraic setting for the study of deformations of higher dimensional automata was sketched. This paper focuses precisely on detailing some of its aspects. The main idea is that the category of homotopy types can be embedded in a new category of dihomotopy types, the embedding being realized by the Globe functor. In this latter category, isomorphism classes of objects are exactly higher dimensional automata up to deformations leaving invariant their computer scientific properties as presence or not of deadlocks (or everything similar or related). Some hints to study the algebraic structure of dihomotopy types are given, in particular a rule to decide whether a statement/notion concerning dihomotopy types is or not the lifting of another statement/notion concerning homotopy types. This rule does not enable to guess what is the lifting of a given notion/statement, it only enables to make the verification, once the lifting has been found.
The branching nerve of HDA and the Kan condition
 Theory and Applications of Categories
, 2003
"... One can associate to any strict globular omegacategory three augmented simplicial nerves called the globular nerve, the branching and the merging semicubical nerves. If this strict globular omegacategory is freely generated by a precubical set, then the corresponding homology theories contain dif ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
One can associate to any strict globular omegacategory three augmented simplicial nerves called the globular nerve, the branching and the merging semicubical nerves. If this strict globular omegacategory is freely generated by a precubical set, then the corresponding homology theories contain different informations about the geometry of the higher dimensional automaton modeled by the precubical set. Adding inverses in this omegacategory to any morphism of dimension greater than 2 and with respect to any composition laws of dimension greater than 1 does not change these homology theories. In such a framework, the globular nerve always satisfies the Kan condition. On the other hand, both branching and merging nerves never satisfy it, except in some very particular and uninteresting situations. In this paper, we introduce two new nerves (the branching and merging semiglobular nerves) satisfying the Kan condition and having conjecturally the same simplicial homology as the branching and merging semicubical nerves respectively in such framework. The latter conjecture is related to the thin elements conjecture already introduced in our previous papers.
Quotients of the multiplihedron as categorified associahedra
 Homotopy, Homology and Appl
, 2008
"... Abstract. We describe a new sequence of polytopes which characterize A ∞ maps from a topological monoid to an A ∞ space. Therefore each of these polytopes is a quotient of the corresponding multiplihedron. Our sequence of polytopes is demonstrated not to be combinatorially equivalent to the associah ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Abstract. We describe a new sequence of polytopes which characterize A ∞ maps from a topological monoid to an A ∞ space. Therefore each of these polytopes is a quotient of the corresponding multiplihedron. Our sequence of polytopes is demonstrated not to be combinatorially equivalent to the associahedra, as was previously assumed in both topological and categorical literature. They are given the new collective name composihedra. We point out how these polytopes are used to parameterize compositions in the formulation of the theories of enriched bicategories and pseudomonoids in a monoidal bicategory. We also present a simple algorithm for determining the extremal points in Euclidean space whose convex hull is the nth polytope in the sequence of