Results 1  10
of
17
SOME GEOMETRIC PERSPECTIVES IN CONCURRENCY THEORY
 HOMOLOGY, HOMOTOPY AND APPLICATIONS, VOL.5(2), 2003, PP.95–136
, 2003
"... Concurrency, i.e., the domain in computer science which deals with parallel (asynchronous) computations, has very strong links with algebraic topology; this is what we are developing in this paper, giving a survey of “geometric” models for concurrency. We show that the properties we want to prove on ..."
Abstract

Cited by 42 (3 self)
 Add to MetaCart
Concurrency, i.e., the domain in computer science which deals with parallel (asynchronous) computations, has very strong links with algebraic topology; this is what we are developing in this paper, giving a survey of “geometric” models for concurrency. We show that the properties we want to prove on concurrent systems are stable under some form of deformation, which is almost homotopy. In fact, as the “direction ” of time matters, we have to allow deformation only as long as we do not reverse the direction of time. This calls for a new homotopy theory: “directed ” or dihomotopy. We develop some of the geometric intuition behind this theory and give some hints about the algebraic objects one can associate with it (in particular homology groups). For some historic as well as for some deeper reasons, the theory is at a stage where there is a nice blend between cubical, ωcategorical and topological techniques.
TOPOLOGICAL DEFORMATION OF HIGHER DIMENSIONAL AUTOMATA
 HOMOLOGY, HOMOTOPY AND APPLICATIONS, VOL.5(2), 2003, PP.39–82
, 2003
"... A local pospace is a gluing of topological spaces which are equipped with a closed partial ordering representing the time flow. They are used as a formalization of higher dimensional automata (see for instance [6]) which model concurrent systems in computer science. It is known [11] that there are ..."
Abstract

Cited by 40 (18 self)
 Add to MetaCart
A local pospace is a gluing of topological spaces which are equipped with a closed partial ordering representing the time flow. They are used as a formalization of higher dimensional automata (see for instance [6]) which model concurrent systems in computer science. It is known [11] that there are two distinct notions of deformation of higher dimensional automata, “spatial” and “temporal”, leaving invariant computer scientific properties like presence or absence of deadlocks. Unfortunately, the formalization of these notions is still unknown in the general case of local pospaces. We introduce here a particular kind of local pospace, the “globular CWcomplexes”, for which we formalize these notions of deformations and which are sufficient to formalize
A model category for the homotopy theory of concurrency
 Homology, Homotopy and Applications
"... Abstract. We construct a cofibrantly generated model structure on the category of flows such that any flow is fibrant and such that two cofibrant flows are homotopy equivalent for this model structure if and only if they are Shomotopy equivalent. This result provides an interpretation of the notion ..."
Abstract

Cited by 37 (13 self)
 Add to MetaCart
Abstract. We construct a cofibrantly generated model structure on the category of flows such that any flow is fibrant and such that two cofibrant flows are homotopy equivalent for this model structure if and only if they are Shomotopy equivalent. This result provides an interpretation of the notion of Shomotopy equivalence in the framework of model
On the Expressiveness of higher dimensional automata
 EXPRESS 2004, ENTCS
, 2005
"... Abstract In this paper I compare the expressive power of several models of concurrency based on their ability to represent causal dependence. To this end, I translate these models, in behaviour preserving ways, into the model of higher dimensional automata, which is the most expressive model under i ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Abstract In this paper I compare the expressive power of several models of concurrency based on their ability to represent causal dependence. To this end, I translate these models, in behaviour preserving ways, into the model of higher dimensional automata, which is the most expressive model under investigation. In particular, I propose four different translations of Petri nets, corresponding to the four different computational interpretations of nets found in the literature. I also extend various equivalence relations for concurrent systems to higher dimensional automata. These include the history preserving bisimulation, which is the coarsest equivalence that fully respects branching time, causality and their interplay, as well as the STbisimulation, a branching time respecting equivalence that takes causality into account to the extent that it is expressible by actions overlapping in time. Through their embeddings in higher dimensional automata, it is now welldefined whether members of different models of concurrency are equivalent.
Investigating The Algebraic Structure of Dihomotopy Types
, 2001
"... This presentation is the sequel of a paper published in GETCO'00 proceedings where a research program to construct an appropriate algebraic setting for the study of deformations of higher dimensional automata was sketched. This paper focuses precisely on detailing some of its aspects. The main idea ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
This presentation is the sequel of a paper published in GETCO'00 proceedings where a research program to construct an appropriate algebraic setting for the study of deformations of higher dimensional automata was sketched. This paper focuses precisely on detailing some of its aspects. The main idea is that the category of homotopy types can be embedded in a new category of dihomotopy types, the embedding being realized by the Globe functor. In this latter category, isomorphism classes of objects are exactly higher dimensional automata up to deformations leaving invariant their computer scientific properties as presence or not of deadlocks (or everything similar or related). Some hints to study the algebraic structure of dihomotopy types are given, in particular a rule to decide whether a statement/notion concerning dihomotopy types is or not the lifting of another statement/notion concerning homotopy types. This rule does not enable to guess what is the lifting of a given notion/statement, it only enables to make the verification, once the lifting has been found.
The branching nerve of HDA and the Kan condition
 Theory and Applications of Categories
, 2003
"... One can associate to any strict globular omegacategory three augmented simplicial nerves called the globular nerve, the branching and the merging semicubical nerves. If this strict globular omegacategory is freely generated by a precubical set, then the corresponding homology theories contain dif ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
One can associate to any strict globular omegacategory three augmented simplicial nerves called the globular nerve, the branching and the merging semicubical nerves. If this strict globular omegacategory is freely generated by a precubical set, then the corresponding homology theories contain different informations about the geometry of the higher dimensional automaton modeled by the precubical set. Adding inverses in this omegacategory to any morphism of dimension greater than 2 and with respect to any composition laws of dimension greater than 1 does not change these homology theories. In such a framework, the globular nerve always satisfies the Kan condition. On the other hand, both branching and merging nerves never satisfy it, except in some very particular and uninteresting situations. In this paper, we introduce two new nerves (the branching and merging semiglobular nerves) satisfying the Kan condition and having conjecturally the same simplicial homology as the branching and merging semicubical nerves respectively in such framework. The latter conjecture is related to the thin elements conjecture already introduced in our previous papers.
Thomotopy and refinement of observation. III. Invariance of the branching and merging homologies
, 2006
"... ..."
This is a collation of the operative parts of a proposal submitted to the NSF concerning
"... cal structures suggests, then sustained interaction is essential. Bringing people together will result in significant technical progress and significantly greater conceptual understanding of these structures. Despite their complexity, if developed coherently, these structures, like categories themse ..."
Abstract
 Add to MetaCart
cal structures suggests, then sustained interaction is essential. Bringing people together will result in significant technical progress and significantly greater conceptual understanding of these structures. Despite their complexity, if developed coherently, these structures, like categories themselves, should eventually become part of the standard mathematical culture. PROJECT DESCRIPTION EXPLORATIONS OF HIGHER CATEGORICAL STRUCTURES AND THEIR APPLICATIONS PROPOSED RESEARCH 1. Historical background and higher homotopies Eilenberg and Mac Lane introduced categories, functors, and natural transformations in their 1945 paper [47]. The language they introduced transformed modern mathematics. Their focus was not on categories and functors, but on natural transformations, which are maps between functors. Higher category theory concerns higher level notions of naturality, which can be viewed as maps between natural transformations, and maps between such maps, and so for
Project Description:
"... d manifolds of a certain dimension and the maps between them are equivalence classes of cobordisms between them, which are manifolds with boundary in the next higher dimension. However, it is in many respects far more natural to deal with an ncobordism "category" constructed from points, edges, surf ..."
Abstract
 Add to MetaCart
d manifolds of a certain dimension and the maps between them are equivalence classes of cobordisms between them, which are manifolds with boundary in the next higher dimension. However, it is in many respects far more natural to deal with an ncobordism "category" constructed from points, edges, surfaces, and so on through nmanifolds that have boundaries with corners. The structure encodes cobordisms between cobordisms between cobordisms. This is an ncategory with additional structure, and one needs analogously structured linear categories as targets for the appropriate "functors" that define the relevant TQFT's. One could equally well introduce the basic idea in terms of formulations of programming languages that describe processes between processes between processes. A closely analogous idea has long been used in the study of homotopies between homotopies between homotopies in algebraic topology. Analogous structures appear throughout mathematics. In contrast to the original Eilenb